262 lines
14 KiB
C++
262 lines
14 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author sgazeos@gmail.com
|
|
//
|
|
|
|
#include <ops/declarable/helpers/image_suppression.h>
|
|
#include <NDArrayFactory.h>
|
|
#include <algorithm>
|
|
#include <numeric>
|
|
#include <queue>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
template <typename T>
|
|
static void nonMaxSuppressionV2_(NDArray* boxes, NDArray* scales, int maxSize, double overlapThreshold,
|
|
double scoreThreshold, NDArray* output) {
|
|
std::vector<int> indices(scales->lengthOf());
|
|
std::iota(indices.begin(), indices.end(), 0);
|
|
auto actualIndicesCount = indices.size();
|
|
for (auto e = 0; e < scales->lengthOf(); e++) {
|
|
if (scales->e<float>(e) < (float)scoreThreshold) {
|
|
indices[e] = -1;
|
|
actualIndicesCount--;
|
|
}
|
|
}
|
|
std::sort(indices.begin(), indices.end(), [scales](int i, int j) {return i >= 0 && j >=0?scales->e<T>(i) > scales->e<T>(j):(i > j);});
|
|
|
|
// std::vector<int> selected(output->lengthOf());
|
|
std::vector<int> selectedIndices(output->lengthOf(), 0);
|
|
auto needToSuppressWithThreshold = [] (NDArray& boxes, int previousIndex, int nextIndex, T threshold) -> bool {
|
|
if (previousIndex < 0 || nextIndex < 0) return true;
|
|
T minYPrev = nd4j::math::nd4j_min(boxes.t<T>(previousIndex, 0), boxes.t<T>(previousIndex, 2));
|
|
T minXPrev = nd4j::math::nd4j_min(boxes.t<T>(previousIndex, 1), boxes.t<T>(previousIndex, 3));
|
|
T maxYPrev = nd4j::math::nd4j_max(boxes.t<T>(previousIndex, 0), boxes.t<T>(previousIndex, 2));
|
|
T maxXPrev = nd4j::math::nd4j_max(boxes.t<T>(previousIndex, 1), boxes.t<T>(previousIndex, 3));
|
|
T minYNext = nd4j::math::nd4j_min(boxes.t<T>(nextIndex, 0), boxes.t<T>(nextIndex, 2));
|
|
T minXNext = nd4j::math::nd4j_min(boxes.t<T>(nextIndex, 1), boxes.t<T>(nextIndex, 3));
|
|
T maxYNext = nd4j::math::nd4j_max(boxes.t<T>(nextIndex, 0), boxes.t<T>(nextIndex, 2));
|
|
T maxXNext = nd4j::math::nd4j_max(boxes.t<T>(nextIndex, 1), boxes.t<T>(nextIndex, 3));
|
|
T areaPrev = (maxYPrev - minYPrev) * (maxXPrev - minXPrev);
|
|
T areaNext = (maxYNext - minYNext) * (maxXNext - minXNext);
|
|
|
|
if (areaNext <= T(0.f) || areaPrev <= T(0.f)) return false;
|
|
|
|
T minIntersectionY = nd4j::math::nd4j_max(minYPrev, minYNext);
|
|
T minIntersectionX = nd4j::math::nd4j_max(minXPrev, minXNext);
|
|
T maxIntersectionY = nd4j::math::nd4j_min(maxYPrev, maxYNext);
|
|
T maxIntersectionX = nd4j::math::nd4j_min(maxXPrev, maxXNext);
|
|
T intersectionArea =
|
|
nd4j::math::nd4j_max(T(maxIntersectionY - minIntersectionY), T(0.0f)) *
|
|
nd4j::math::nd4j_max(T(maxIntersectionX - minIntersectionX), T(0.0f));
|
|
T intersectionValue = intersectionArea / (areaPrev + areaNext - intersectionArea);
|
|
return intersectionValue > threshold;
|
|
|
|
};
|
|
// int numSelected = 0;
|
|
int numBoxes = actualIndicesCount; //boxes->sizeAt(0);
|
|
int numSelected = 0;
|
|
|
|
for (int i = 0; i < numBoxes; ++i) {
|
|
bool shouldSelect = numSelected < output->lengthOf();
|
|
|
|
// FIXME: add parallelism here
|
|
for (int j = numSelected - 1; j >= 0; --j) {
|
|
if (shouldSelect)
|
|
if (needToSuppressWithThreshold(*boxes, indices[i], indices[selectedIndices[j]], T(overlapThreshold))) {
|
|
shouldSelect = false;
|
|
}
|
|
}
|
|
if (shouldSelect) {
|
|
output->p(numSelected, indices[i]);
|
|
selectedIndices[numSelected++] = i;
|
|
}
|
|
}
|
|
}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// Return intersection-over-union overlap between boxes i and j
|
|
template <typename T>
|
|
static inline T similirityV3_(NDArray const& boxes, Nd4jLong i, Nd4jLong j) {
|
|
const T zero = static_cast<T>(0.f);
|
|
const T yminI = math::nd4j_min(boxes.t<T>(i, 0), boxes.t<T>(i, 2));
|
|
const T xminI = math::nd4j_min(boxes.t<T>(i, 1), boxes.t<T>(i, 3));
|
|
const T ymaxI = math::nd4j_max(boxes.t<T>(i, 0), boxes.t<T>(i, 2));
|
|
const T xmaxI = math::nd4j_max(boxes.t<T>(i, 1), boxes.t<T>(i, 3));
|
|
const T yminJ = math::nd4j_min(boxes.t<T>(j, 0), boxes.t<T>(j, 2));
|
|
const T xminJ = math::nd4j_min(boxes.t<T>(j, 1), boxes.t<T>(j, 3));
|
|
const T ymaxJ = math::nd4j_max(boxes.t<T>(j, 0), boxes.t<T>(j, 2));
|
|
const T xmaxJ = math::nd4j_max(boxes.t<T>(j, 1), boxes.t<T>(j, 3));
|
|
const T areaI = (ymaxI - yminI) * (xmaxI - xminI);
|
|
const T areaJ = (ymaxJ - yminJ) * (xmaxJ - xminJ);
|
|
if (areaI <= zero || areaJ <= zero) {
|
|
return zero;
|
|
}
|
|
const T intersectionYmin = math::nd4j_max(yminI, yminJ);
|
|
const T intersectionXmin = math::nd4j_max(xminI, xminJ);
|
|
const T intersectionYmax = math::nd4j_min(ymaxI, ymaxJ);
|
|
const T intersectionXmax = math::nd4j_min(xmaxI, xmaxJ);
|
|
const T intersectionY = intersectionYmax - intersectionYmin;
|
|
const T intersectionX = intersectionXmax - intersectionXmin;
|
|
const T intersectionArea = math::nd4j_max(intersectionY, zero) * math::nd4j_max(intersectionX, zero);
|
|
return intersectionArea / (areaI + areaJ - intersectionArea);
|
|
}
|
|
|
|
template <typename T>
|
|
static inline T similiratyOverlaps_(NDArray const& boxes, Nd4jLong i, Nd4jLong j) {
|
|
return boxes.t<T>(i, j);
|
|
}
|
|
|
|
typedef NDArray (*SimiliratyFunc)(NDArray const& boxes, Nd4jLong i, Nd4jLong j);
|
|
|
|
static NDArray similiratyOverlaps(NDArray const& boxes, Nd4jLong i, Nd4jLong j) {
|
|
NDArray res(boxes.dataType(), boxes.getContext()); // = NDArrayFactory::create(0.);
|
|
BUILD_SINGLE_SELECTOR(boxes.dataType(), res = similiratyOverlaps_, (boxes, i, j) , FLOAT_TYPES);
|
|
return res;
|
|
}
|
|
|
|
static NDArray similiratyV3(NDArray const& boxes, Nd4jLong i, Nd4jLong j) {
|
|
NDArray res(boxes.dataType(), boxes.getContext()); // = NDArrayFactory::create(0.);
|
|
BUILD_SINGLE_SELECTOR(boxes.dataType(), res = similirityV3_, (boxes, i, j) , FLOAT_TYPES);
|
|
return res;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename T, typename I>
|
|
static Nd4jLong
|
|
nonMaxSuppressionGeneric_(nd4j::LaunchContext* context, NDArray* boxes, NDArray* scores, int outputSize,
|
|
float overlapThreshold, float scoreThreshold, NDArray* output, SimiliratyFunc f) {
|
|
|
|
auto numBoxes = boxes->sizeAt(0);
|
|
T* scoresData = scores->dataBuffer()->primaryAsT<T>();
|
|
|
|
// Data structure for a selection candidate in NMS.
|
|
struct Candidate {
|
|
int _boxIndex;
|
|
T _score;
|
|
int _suppressBeginIndex;
|
|
};
|
|
|
|
auto cmp = [](const Candidate& bsI, const Candidate& bsJ) -> bool{
|
|
return ((bsI._score == bsJ._score) && (bsI._boxIndex > bsJ._boxIndex)) ||
|
|
(bsI._score < bsJ._score);
|
|
};
|
|
|
|
std::priority_queue<Candidate, std::deque<Candidate>, decltype(cmp)> candidatePriorityQueue(cmp);
|
|
for (auto i = 0; i < scores->lengthOf(); ++i) {
|
|
if ((float)scoresData[i] > (float)scoreThreshold) {
|
|
candidatePriorityQueue.emplace(Candidate({i, scoresData[i], 0}));
|
|
}
|
|
}
|
|
|
|
std::vector<I> selected;
|
|
T similarity, originalScore;
|
|
Candidate nextCandidate;
|
|
|
|
while (selected.size() < outputSize && !candidatePriorityQueue.empty()) {
|
|
nextCandidate = candidatePriorityQueue.top();
|
|
originalScore = nextCandidate._score;
|
|
candidatePriorityQueue.pop();
|
|
|
|
// Overlapping boxes are likely to have similar scores, therefore we
|
|
// iterate through the previously selected boxes backwards in order to
|
|
// see if `nextCandidate` should be suppressed. We also enforce a property
|
|
// that a candidate can be suppressed by another candidate no more than
|
|
// once via `suppress_begin_index` which tracks which previously selected
|
|
// boxes have already been compared against next_candidate prior to a given
|
|
// iteration. These previous selected boxes are then skipped over in the
|
|
// following loop.
|
|
bool shouldHardSuppress = false;
|
|
for (int j = static_cast<int>(selected.size()) - 1; j >= nextCandidate._suppressBeginIndex; --j) {
|
|
auto similarityA = f(*boxes, nextCandidate._boxIndex, selected[j]); //boxes->t<T>(nextCandidate._boxIndex, selected[j]);
|
|
similarity = similarityA.template t<T>(0);
|
|
nextCandidate._score *= T(similarity <= overlapThreshold?1.0:0.); //suppressWeightFunc(similarity);
|
|
|
|
// First decide whether to perform hard suppression
|
|
if ((float)similarity >= static_cast<float>(overlapThreshold)) {
|
|
shouldHardSuppress = true;
|
|
break;
|
|
}
|
|
|
|
// If next_candidate survives hard suppression, apply soft suppression
|
|
if ((float)nextCandidate._score <= (float)scoreThreshold) break;
|
|
}
|
|
// If `nextCandidate._score` has not dropped below `scoreThreshold`
|
|
// by this point, then we know that we went through all of the previous
|
|
// selections and can safely update `suppress_begin_index` to
|
|
// `selected.size()`. If on the other hand `next_candidate.score`
|
|
// *has* dropped below the score threshold, then since `suppressWeight`
|
|
// always returns values in [0, 1], further suppression by items that were
|
|
// not covered in the above for loop would not have caused the algorithm
|
|
// to select this item. We thus do the same update to
|
|
// `suppressBeginIndex`, but really, this element will not be added back
|
|
// into the priority queue in the following.
|
|
nextCandidate._suppressBeginIndex = selected.size();
|
|
|
|
if (!shouldHardSuppress) {
|
|
if (nextCandidate._score == originalScore) {
|
|
// Suppression has not occurred, so select next_candidate
|
|
selected.push_back(nextCandidate._boxIndex);
|
|
// selected_scores.push_back(nextCandidate._score);
|
|
}
|
|
if ((float)nextCandidate._score > (float)scoreThreshold) {
|
|
// Soft suppression has occurred and current score is still greater than
|
|
// score_threshold; add next_candidate back onto priority queue.
|
|
candidatePriorityQueue.push(nextCandidate);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (output) {
|
|
DataBuffer buf(selected.data(), selected.size() * sizeof(I), DataTypeUtils::fromT<I>());
|
|
output->dataBuffer()->copyBufferFrom(buf, buf.getLenInBytes());
|
|
}
|
|
|
|
return (Nd4jLong)selected.size();
|
|
}
|
|
|
|
Nd4jLong
|
|
nonMaxSuppressionGeneric(nd4j::LaunchContext* context, NDArray* boxes, NDArray* scores, int maxSize,
|
|
double overlapThreshold, double scoreThreshold, NDArray* output) {
|
|
BUILD_DOUBLE_SELECTOR(boxes->dataType(), output == nullptr?DataType::INT32:output->dataType(), return nonMaxSuppressionGeneric_, (context, boxes, scores, maxSize, overlapThreshold, scoreThreshold, output, similiratyOverlaps), FLOAT_TYPES, INTEGER_TYPES);
|
|
return 0;
|
|
}
|
|
|
|
Nd4jLong
|
|
nonMaxSuppressionV3(nd4j::LaunchContext* context, NDArray* boxes, NDArray* scores, int maxSize,
|
|
double overlapThreshold, double scoreThreshold, NDArray* output) {
|
|
BUILD_DOUBLE_SELECTOR(boxes->dataType(), output == nullptr?DataType::INT32:output->dataType(), return nonMaxSuppressionGeneric_, (context, boxes, scores, maxSize, overlapThreshold, scoreThreshold, output, similiratyV3), FLOAT_TYPES, INTEGER_TYPES);
|
|
return 0;
|
|
}
|
|
|
|
BUILD_DOUBLE_TEMPLATE(template Nd4jLong nonMaxSuppressionGeneric_, (nd4j::LaunchContext* context, NDArray* boxes, NDArray* scores, int maxSize,
|
|
float overlapThreshold, float scoreThreshold, NDArray* output, SimiliratyFunc similiratyFunc), FLOAT_TYPES, INTEGER_TYPES);
|
|
|
|
void
|
|
nonMaxSuppression(nd4j::LaunchContext * context, NDArray* boxes, NDArray* scales, int maxSize,
|
|
double overlapThreshold, double scoreThreshold, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(boxes->dataType(), nonMaxSuppressionV2_, (boxes, scales, maxSize,
|
|
overlapThreshold, scoreThreshold, output), NUMERIC_TYPES);
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template void nonMaxSuppressionV2_, (NDArray* boxes, NDArray* scales, int maxSize,
|
|
double overlapThreshold, double scoreThreshold, NDArray* output), NUMERIC_TYPES);
|
|
|
|
}
|
|
}
|
|
} |