258 lines
17 KiB
C++
258 lines
17 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
#include <op_boilerplate.h>
|
|
#if NOT_EXCLUDED(OP_depthwise_conv2d)
|
|
|
|
#include <op_boilerplate.h>
|
|
#include <ops/declarable/CustomOperations.h>
|
|
#include <declarable/helpers/convolutions.h>
|
|
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
|
|
CUSTOM_OP_IMPL(depthwise_conv2d, 2, 1, false, 0, 9) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
|
|
auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, mC] always
|
|
auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC] = iC*mC
|
|
|
|
auto output = OUTPUT_VARIABLE(0); // [bS, oH, oW, iC*mC] (NHWC) or [bS, iC*mC, oH, oW] (NCHW)
|
|
|
|
REQUIRE_TRUE(input->rankOf() == 4, 0, "CUSTOM DEPTHWISECONV2D OP: rank of input array must be equal to 4, but got %i instead !", input->rankOf());
|
|
REQUIRE_TRUE(weights->rankOf() == 4, 0, "CUSTOM DEPTHWISECONV2D OP: rank of weights array must be equal to 4, but got %i instead !", weights->rankOf());
|
|
|
|
int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0));// filter(kernel) height
|
|
int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1));// filter(kernel) width
|
|
int sH = INT_ARG(2); // strides height
|
|
int sW = INT_ARG(3); // strides width
|
|
int pH = INT_ARG(4); // paddings height
|
|
int pW = INT_ARG(5); // paddings width
|
|
int dH = INT_ARG(6); // dilations height
|
|
int dW = INT_ARG(7); // dilations width
|
|
int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME
|
|
int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC
|
|
|
|
int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, channels multiplier(oC = iC*mC), output channels, output height/width
|
|
int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *output, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH);
|
|
mC = weights->sizeAt(indWmC); // channels multiplier
|
|
|
|
std::vector<Nd4jLong> expectedWeightsShape = {kH, kW, iC, mC};
|
|
REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM DEPTHWISECONV2D OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str());
|
|
REQUIRE_TRUE(output->sizeAt(indIOioC) == iC*mC, 0, "CUSTOM DEPTHWISECONV2D OP: the output_channels must be equal to input_channels * channels_multiplier = %i !", iC*mC);
|
|
if (bias)
|
|
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM DEPTHWISECONV2D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
|
|
|
|
ConvolutionUtils::depthwiseConv2d(block, input, weights, bias, output, kH,kW,sH,sW,pH,pW,dH,dW,isSameMode,isNCHW);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
DECLARE_TYPES(depthwise_conv2d) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(nd4j::DataType::ANY)
|
|
->setAllowedOutputTypes({ALL_FLOATS});
|
|
}
|
|
DECLARE_SHAPE_FN(depthwise_conv2d) {
|
|
|
|
Nd4jLong* inputShapeInfo = inputShape->at(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
|
|
Nd4jLong* weightsShapeInfo = inputShape->at(1); // [kH, kW, iC, mC] always
|
|
Nd4jLong* biasShapeInfo = block.width() > 2 ? inputShape->at(2) : nullptr; // [oC] = iC*mC
|
|
|
|
const int rank = 4;
|
|
REQUIRE_TRUE(shape::rank(inputShapeInfo) == rank, 0, "CUSTOM DEPTHWISECONV2D OP: rank of input array must be equal to %i, but got %i instead !", rank, inputShapeInfo[0]);
|
|
REQUIRE_TRUE(shape::rank(weightsShapeInfo) == rank, 0, "CUSTOM DEPTHWISECONV2D OP: rank of weights array must be equal to %i, but got %i instead !", rank, weightsShapeInfo[0]);
|
|
|
|
int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(shape::sizeAt(weightsShapeInfo, 0));// filter(kernel) height
|
|
int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(shape::sizeAt(weightsShapeInfo, 1));// filter(kernel) width
|
|
int sH = INT_ARG(2); // strides height
|
|
int sW = INT_ARG(3); // strides width
|
|
int pH = INT_ARG(4); // paddings height
|
|
int pW = INT_ARG(5); // paddings width
|
|
int dH = INT_ARG(6); // dilations height
|
|
int dW = INT_ARG(7); // dilations width
|
|
int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME
|
|
int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 1-NHWC, 0-NCHW
|
|
|
|
int indIOioC, indIiH, indWmC(3);
|
|
if(!isNCHW) {
|
|
indIOioC = 3; indIiH = 1;
|
|
}
|
|
else {
|
|
indIOioC = 1; indIiH = 2;
|
|
}
|
|
|
|
const int bS = shape::sizeAt(inputShapeInfo, 0); // batch size
|
|
const int iH = shape::sizeAt(inputShapeInfo, indIiH); // input height
|
|
const int iW = shape::sizeAt(inputShapeInfo, indIiH+1); // input width
|
|
const int iC = shape::sizeAt(inputShapeInfo, indIOioC); // input channels
|
|
const int mC = shape::sizeAt(weightsShapeInfo, indWmC); // channels multiplier(oC = iC*mC)
|
|
const int oC = iC*mC; // output channels
|
|
|
|
|
|
std::vector<Nd4jLong> expectedWeightsShape = {kH, kW, iC, mC};
|
|
REQUIRE_TRUE(shape::shapeEquals(4, expectedWeightsShape.data(), shape::rank(weightsShapeInfo), shape::shapeOf(weightsShapeInfo)), 0, "DEPTHWISECONV2D OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weightsShapeInfo).c_str());
|
|
if (biasShapeInfo)
|
|
REQUIRE_TRUE(shape::rank(biasShapeInfo) <= 2 && oC == shape::length(biasShapeInfo), 0, "DEPTHWISECONV2D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, shape::rank(biasShapeInfo), shape::length(biasShapeInfo));
|
|
|
|
int oH, oW; // output height, width
|
|
ConvolutionUtils::calcOutSizePool2D(oH, oW, kH, kW, sH, sW, pH, pW, dH, dW, iH, iW, isSameMode);
|
|
|
|
Nd4jLong* outputShapeInfo = nullptr;
|
|
ALLOCATE(outputShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inputShapeInfo), Nd4jLong);
|
|
|
|
outputShapeInfo[0] = rank;
|
|
outputShapeInfo[1] = bS;
|
|
|
|
if (isNCHW) {
|
|
outputShapeInfo[2] = oC;
|
|
outputShapeInfo[3] = oH;
|
|
outputShapeInfo[4] = oW;
|
|
} else {
|
|
outputShapeInfo[2] = oH;
|
|
outputShapeInfo[3] = oW;
|
|
outputShapeInfo[4] = oC;
|
|
}
|
|
|
|
ShapeUtils::updateStridesAndType(outputShapeInfo, weightsShapeInfo, shape::order(inputShapeInfo));
|
|
|
|
return SHAPELIST(CONSTANT(outputShapeInfo));
|
|
}
|
|
|
|
DECLARE_TYPES(depthwise_conv2d_bp) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(nd4j::DataType::ANY)
|
|
->setAllowedOutputTypes({ALL_FLOATS});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
CUSTOM_OP_IMPL(depthwise_conv2d_bp, 3, 2, false, 0, 9) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW)
|
|
auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, mC] always
|
|
auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC] = [iC*mC]
|
|
auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oH, oW, oC] (NDHWC) or [bS, oC, oH, oW] (NCDHW), epsilon_next
|
|
|
|
auto gradI = OUTPUT_VARIABLE(0); // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW), epsilon
|
|
auto gradW = OUTPUT_VARIABLE(1); // [kH, kW, iC, mC] always
|
|
auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC]
|
|
|
|
REQUIRE_TRUE(input->rankOf() == 4, 0, "CUSTOM DEPTHWISECONV2D_BP OP: rank of input array must be equal to 4, but got %i instead !", input->rankOf());
|
|
REQUIRE_TRUE(weights->rankOf() == 4, 0, "CUSTOM DEPTHWISECONV2D_BP OP: rank of weights array must be equal to 4, but got %i instead !", weights->rankOf());
|
|
REQUIRE_TRUE(gradO->rankOf() == 4, 0, "CUSTOM DEPTHWISECONV2D_BP OP: rank of output gradients (next epsilon) array must be equal to 4, but got %i instead !", gradO->rankOf());
|
|
|
|
int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0));// filter(kernel) height
|
|
int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1));// filter(kernel) width
|
|
int sH = INT_ARG(2); // strides height
|
|
int sW = INT_ARG(3); // strides width
|
|
int pH = INT_ARG(4); // paddings height
|
|
int pW = INT_ARG(5); // paddings width
|
|
int dH = INT_ARG(6); // dilations height
|
|
int dW = INT_ARG(7); // dilations width
|
|
int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME
|
|
int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 1-NHWC, 0-NCHW
|
|
|
|
int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, channels multiplier(oC = iC*mC), output channels, output height/width
|
|
int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH);
|
|
mC = weights->sizeAt(indWmC); // channels multiplier
|
|
|
|
int trueoH, trueoW; // correct output height, width
|
|
ConvolutionUtils::calcOutSizePool2D(trueoH, trueoW, kH, kW, sH, sW, pH, pW, dH, dW, iH, iW, isSameMode);
|
|
|
|
std::vector<Nd4jLong> expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoH,trueoW, 0,indIOioC,indOoH,indOoH+1});
|
|
std::vector<Nd4jLong> expectedWeightsShape = {kH, kW, iC, mC};
|
|
REQUIRE_TRUE(gradO->isSameShape(expectedGradOShape), 0, "CUSTOM DEPTHWISECONV2D_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradO).c_str());
|
|
REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM DEPTHWISECONV2D_BP OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str());
|
|
if(bias)
|
|
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM DEPTHWISECONV2D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
|
|
|
|
ConvolutionUtils::depthwiseConv2dBP(block, input, weights, bias, gradO, gradI, gradW, gradB, kH,kW, sH,sW, pH,pW, dH,dW, isSameMode, isNCHW);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
DECLARE_SHAPE_FN(depthwise_conv2d_bp) {
|
|
|
|
Nd4jLong* inputShapeInfo = inputShape->at(0);
|
|
Nd4jLong* weightsShapeInfo = inputShape->at(1);
|
|
Nd4jLong* biasShapeInfo = block.width() > 3 ? inputShape->at(2) : nullptr;
|
|
Nd4jLong* gradOShapeInfo = block.width() > 3 ? inputShape->at(3) : inputShape->at(2);
|
|
|
|
const int rank = 4;
|
|
REQUIRE_TRUE(shape::rank(inputShapeInfo) == rank, 0, "CUSTOM DEPTHWISECONV2D_BP OP: rank of input array must be equal to %i, but got %i instead !", rank, shape::rank(inputShapeInfo));
|
|
REQUIRE_TRUE(shape::rank(weightsShapeInfo) == rank, 0, "CUSTOM DEPTHWISECONV2D_BP OP: rank of weights array must be equal to %i, but got %i instead !", rank, shape::rank(weightsShapeInfo));
|
|
REQUIRE_TRUE(shape::rank(gradOShapeInfo) == rank, 0, "CUSTOM DEPTHWISECONV2D_BP OP: rank of output gradients (next epsilon) array must be equal to %i, but got %i instead !", rank, shape::rank(gradOShapeInfo));
|
|
|
|
int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(shape::sizeAt(weightsShapeInfo, 0));// filter(kernel) height
|
|
int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(shape::sizeAt(weightsShapeInfo, 1));// filter(kernel) width
|
|
int sH = INT_ARG(2); // strides height
|
|
int sW = INT_ARG(3); // strides width
|
|
int pH = INT_ARG(4); // paddings height
|
|
int pW = INT_ARG(5); // paddings width
|
|
int dH = INT_ARG(6); // dilations height
|
|
int dW = INT_ARG(7); // dilations width
|
|
int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME
|
|
int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 1-NHWC, 0-NCHW
|
|
|
|
int indIOioC, indIiH, indWmC(3);
|
|
if(!isNCHW) {
|
|
indIOioC = 3; indIiH = 1;
|
|
}
|
|
else {
|
|
indIOioC = 1; indIiH = 2;
|
|
}
|
|
|
|
const int bS = shape::sizeAt(inputShapeInfo, 0); // batch size
|
|
const int iH = shape::sizeAt(inputShapeInfo, indIiH); // input height
|
|
const int iW = shape::sizeAt(inputShapeInfo, indIiH+1); // input width
|
|
const int iC = shape::sizeAt(inputShapeInfo, indIOioC); // input channels
|
|
const int mC = shape::sizeAt(weightsShapeInfo, indWmC); // channels multiplier(oC = iC*mC)
|
|
const int oC = iC*mC; // output channels
|
|
|
|
int trueoH, trueoW; // correct output height, width
|
|
ConvolutionUtils::calcOutSizePool2D(trueoH, trueoW, kH, kW, sH, sW, pH, pW, dH, dW, iH, iW, isSameMode);
|
|
|
|
std::vector<Nd4jLong> expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoH,trueoW, 0,indIOioC,indIiH,indIiH+1});
|
|
std::vector<Nd4jLong> expectedWeightsShape = {kH, kW, iC, mC};
|
|
REQUIRE_TRUE(shape::shapeEquals(4, expectedGradOShape.data(), shape::rank(gradOShapeInfo), shape::shapeOf(gradOShapeInfo)), 0, "CUSTOM DEPTHWISECONV2D_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradOShapeInfo).c_str());
|
|
REQUIRE_TRUE(shape::shapeEquals(4, expectedWeightsShape.data(), shape::rank(weightsShapeInfo), shape::shapeOf(weightsShapeInfo)), 0, "CUSTOM DEPTHWISECONV2D_BP OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weightsShapeInfo).c_str());
|
|
if(biasShapeInfo)
|
|
REQUIRE_TRUE(shape::rank(biasShapeInfo) <= 2 && oC == shape::length(biasShapeInfo), 0, "CUSTOM DEPTHWISECONV2D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, shape::rank(biasShapeInfo), shape::length(biasShapeInfo));
|
|
|
|
auto gradIshapeInfo = ShapeBuilders::copyShapeInfoAndType(inputShapeInfo, gradOShapeInfo, false, block.getWorkspace());
|
|
auto gradWshapeInfo = ShapeBuilders::copyShapeInfoAndType(weightsShapeInfo, gradOShapeInfo, false, block.getWorkspace());
|
|
|
|
if(biasShapeInfo) {
|
|
Nd4jLong* gradBshapeInfo = ShapeBuilders::copyShapeInfoAndType(biasShapeInfo, gradOShapeInfo, false, block.getWorkspace());
|
|
return SHAPELIST(CONSTANT(gradIshapeInfo), CONSTANT(gradWshapeInfo), CONSTANT(gradBshapeInfo));
|
|
}
|
|
|
|
return SHAPELIST(CONSTANT(gradIshapeInfo), CONSTANT(gradWshapeInfo));
|
|
}
|
|
|
|
|
|
|
|
}
|
|
}
|
|
#endif |