* initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * some minor singleton changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * more iterations Signed-off-by: raver119 <raver119@gmail.com> * more singletons updated Signed-off-by: raver119 <raver119@gmail.com> * more singletons updated Signed-off-by: raver119 <raver119@gmail.com> * more changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * CUDA updates Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Java side update Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one commented out test Signed-off-by: raver119@gmail.com <raver119@gmail.com>
		
			
				
	
	
		
			103 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			103 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*******************************************************************************
 | 
						|
 * Copyright (c) 2015-2018 Skymind, Inc.
 | 
						|
 *
 | 
						|
 * This program and the accompanying materials are made available under the
 | 
						|
 * terms of the Apache License, Version 2.0 which is available at
 | 
						|
 * https://www.apache.org/licenses/LICENSE-2.0.
 | 
						|
 *
 | 
						|
 * Unless required by applicable law or agreed to in writing, software
 | 
						|
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | 
						|
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 | 
						|
 * License for the specific language governing permissions and limitations
 | 
						|
 * under the License.
 | 
						|
 *
 | 
						|
 * SPDX-License-Identifier: Apache-2.0
 | 
						|
 ******************************************************************************/
 | 
						|
 | 
						|
//
 | 
						|
// Created by raver119 on 02.11.2017.
 | 
						|
//
 | 
						|
 | 
						|
#include <system/op_boilerplate.h>
 | 
						|
#if NOT_EXCLUDED(OP_expand_dims)
 | 
						|
 | 
						|
#include <ops/declarable/CustomOperations.h>
 | 
						|
 | 
						|
namespace sd {
 | 
						|
    namespace ops {
 | 
						|
        CUSTOM_OP_IMPL(expand_dims, 1, 1, false, 0, -2) {
 | 
						|
            auto input = INPUT_VARIABLE(0);
 | 
						|
            auto output = OUTPUT_VARIABLE(0);
 | 
						|
 | 
						|
            if (input->isScalar()) {
 | 
						|
                output->assign(input);
 | 
						|
                return Status::OK();
 | 
						|
            }
 | 
						|
 | 
						|
            Nd4jLong axis = block.numI() > 0 ? INT_ARG(0) : INPUT_VARIABLE(1)->e<int>(0);
 | 
						|
 | 
						|
            if (axis < 0)
 | 
						|
                axis += input->rankOf() + 1;
 | 
						|
 | 
						|
            REQUIRE_TRUE(axis >= 0 && axis <= input->rankOf()+1, 0, "ExpandDims: axis should be in range of 0...%i in this case, but got %i instead", input->rankOf() + 1, axis);
 | 
						|
 | 
						|
            std::vector<Nd4jLong> shape(input->rankOf());
 | 
						|
 | 
						|
            for(int e = 0; e < input->rankOf(); e++)
 | 
						|
                shape[input->sizeAt(e)];
 | 
						|
 | 
						|
            shape.insert(shape.begin() + axis, 1);
 | 
						|
 | 
						|
            if (input->ews() == 1 && output->ews() == 1 && input->ordering() == output->ordering()) {
 | 
						|
                output->dataBuffer()->copyBufferFrom(*input->dataBuffer().get(), output->lengthOf() * DataTypeUtils::sizeOfElement(output->dataType()), 0, input->bufferOffset());
 | 
						|
            } else {
 | 
						|
                auto tmp = input->reshape(input->ordering(), shape);
 | 
						|
                output->assign(tmp);
 | 
						|
            }
 | 
						|
            return Status::OK();
 | 
						|
        }
 | 
						|
 | 
						|
        DECLARE_TYPES(expand_dims) {
 | 
						|
            getOpDescriptor()
 | 
						|
                    ->setAllowedInputTypes(sd::DataType::ANY)
 | 
						|
                    ->setSameMode(true);
 | 
						|
        }
 | 
						|
 | 
						|
        DECLARE_SHAPE_FN(expand_dims) {
 | 
						|
            auto inShape = inputShape->at(0);
 | 
						|
 | 
						|
            // 0D scalar edge case
 | 
						|
            if (shape::rank(inShape) == 0) {
 | 
						|
 | 
						|
                Nd4jLong x = 1;
 | 
						|
                auto newShape = ConstantShapeHelper::getInstance().createShapeInfo(ArrayOptions::dataType(inShape), 'c', 1, &x);
 | 
						|
                return SHAPELIST(newShape);
 | 
						|
            }
 | 
						|
 | 
						|
            // FIXME: temp workaround for TF
 | 
						|
            if (shape::isScalar(inShape)) {                
 | 
						|
                auto newShape = ConstantShapeHelper::getInstance().createShapeInfo(ArrayOptions::dataType(inShape), 'c', 2, shape::shapeOf(inShape));
 | 
						|
                return SHAPELIST(newShape);
 | 
						|
            }
 | 
						|
 | 
						|
            auto x_rank = shape::rank(inShape);
 | 
						|
            char order = shape::order(inShape);
 | 
						|
 | 
						|
            Nd4jLong axis = block.numI() > 0 ? INT_ARG(0) : INPUT_VARIABLE(1)->e<int>(0);
 | 
						|
 | 
						|
            if (axis < 0)
 | 
						|
                axis += x_rank + 1;
 | 
						|
 | 
						|
            std::vector<Nd4jLong> shape;
 | 
						|
            for(int e = 0; e < x_rank; e++)
 | 
						|
                shape.emplace_back(shape::shapeOf(inShape)[e]);
 | 
						|
 | 
						|
            shape.insert(shape.begin() + axis, 1);
 | 
						|
 | 
						|
            auto newShape = ConstantShapeHelper::getInstance().createShapeInfo(ArrayOptions::dataType(inShape), order, shape);
 | 
						|
            return SHAPELIST(newShape);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif |