85 lines
3.8 KiB
Plaintext
85 lines
3.8 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author GS <sgazeos@gmail.com>
|
|
//
|
|
|
|
#include <ops/declarable/helpers/legacy_helpers.h>
|
|
#include <NDArrayFactory.h>
|
|
#include <op_boilerplate.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
linkage void tanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
T th = nd4j::math::nd4j_tanh<T,T>(x);
|
|
return y * ((T)1.0f - (th * th));
|
|
};
|
|
|
|
input->applyPairwiseLambda(epsilon, functor, output);
|
|
}
|
|
|
|
void tanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), tanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
|
|
// return static_cast<X>(d2) * simdOps::HardTanhDerivative<X>::op(d1, nullptr);
|
|
template <typename T>
|
|
linkage void hardTanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
T th = nd4j::math::nd4j_tanh<T,T>(x);
|
|
return y * simdOps::HardTanhDerivative<T>::op(x, nullptr);
|
|
};
|
|
|
|
input->applyPairwiseLambda(epsilon, functor, output);
|
|
}
|
|
|
|
void hardTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), hardTanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
linkage void rationalTanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
return y * simdOps::RationalTanhDerivative<T>::op(x, nullptr);
|
|
};
|
|
|
|
input->applyPairwiseLambda(epsilon, functor, output);
|
|
}
|
|
|
|
void rationalTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), rationalTanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
linkage void rectifiedTanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
return x > (T) 0.0f ? y * (nd4j::math::nd4j_tanhderivative<T,T>(x)) : (T) 0.0f;
|
|
};
|
|
|
|
input->applyPairwiseLambda(epsilon, functor, output);
|
|
}
|
|
|
|
void rectifiedTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), rectifiedTanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
}
|
|
}
|
|
} |