Go to file
raver119 6de00bf75f
[WIP] Weekly update of repo (#8390)
* [WIP] Fix compilation after nd4j changes (#37)

* Fix compilation.

* Some tests fixed

* Disable tests temporarily.

* Restored test

* Tests restored.

* Test restored.

* [WIP] perf tests (#40)

* special maxpool test

Signed-off-by: raver119 <raver119@gmail.com>

* special maxpool test

Signed-off-by: raver119 <raver119@gmail.com>

* Shyrma bnorm bp (#41)

Batchnorm backprop mkldnn

* Add SameDiff memory reuse memory manager (array cache) (#39)

* Attention op comments

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* ArrayCacheMemoryMgr - first pass

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Tweak array cache for use with SameDiff identity arrays

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* ArrayCacheMemoryMgr javadoc and properly get max memory

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* LRU cache policy + add tests

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Resize arrays internally if required for ArrayCacheMemoryMgr

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Test improvement

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Small polish

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* SameDiff op runtime benchmarking listener (#42)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* INLINE_LOOPS for windows

Signed-off-by: raver119 <raver119@gmail.com>

* [WIP] ThreadPool (#8)

This PR removes OpenMP use in 95% of cases
2019-11-13 17:15:18 +03:00
.github Update contributing and issue/PR templates (#7934) 2019-06-22 16:21:27 +10:00
arbiter DL4J/ND4J: Do pass on integer casts (#15) 2019-10-31 11:23:09 +02:00
datavec Squashed and signed (#8330) 2019-10-31 17:12:50 +11:00
deeplearning4j [WIP] Weekly update of repo (#8390) 2019-11-13 17:15:18 +03:00
docs removing obsolete nd4j docs. (#8380) 2019-11-12 13:56:57 +11:00
gym-java-client RL4J: Make a few fixes (#8303) 2019-10-31 13:41:52 +09:00
jumpy Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
libnd4j [WIP] Weekly update of repo (#8390) 2019-11-13 17:15:18 +03:00
nd4j [WIP] Weekly update of repo (#8390) 2019-11-13 17:15:18 +03:00
nd4s [WIP] Weekly update of repo (#8390) 2019-11-13 17:15:18 +03:00
pydatavec non-inplace pydatavec transform processes (#8326) 2019-10-30 15:59:54 +01:00
pydl4j Fix backend dependencies for tests (#189) 2019-08-29 12:54:48 +09:00
rl4j RL4J: Make a few fixes (#8303) 2019-10-31 13:41:52 +09:00
scalnet fix link to scalnet examples (#8354) 2019-11-05 11:12:08 +11:00
.gitignore Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
CONTRIBUTING.md Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
Jenkinsfile Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
LICENSE Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
README.md Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
change-cuda-versions.sh Update dependencies to just released JavaCPP and JavaCV 1.5.2 2019-11-07 17:57:34 +09:00
change-scala-versions.sh Version upgrades (#199) 2019-08-30 14:35:27 +10:00
perform-release.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
pom.xml Update dependencies to just released JavaCPP and JavaCV 1.5.2 2019-11-07 17:57:34 +09:00

README.md

Monorepo of Deeplearning4j

Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to deeplearning4j:

To build everything, we can use commands like

./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx

or

mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true

An example of GPU "CC" or compute capability is 61 for Titan X Pascal.

Want some examples?

We have separate repository with various examples available: https://github.com/eclipse/deeplearning4j-examples

In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/eclipse/deeplearning4j-examples/tree/master/tutorials