raver119 589401477d
[WIP] bunch of improvements (#257)
* - profiling bias_add op
- add some docementation

Signed-off-by: Yurii <yurii@skymind.io>

* - minor change

Signed-off-by: Yurii <yurii@skymind.io>

* - provide addBias cuda kernel

Signed-off-by: Yurii <yurii@skymind.io>

* - improve shape::getIndexOfffset and change its signature

Signed-off-by: Yurii <yurii@skymind.io>

* - same as previous

Signed-off-by: Yurii <yurii@skymind.io>

* - improve and change signature in some shape:: stuff which has to do with calculation of offsets for array elements

Signed-off-by: Yurii <yurii@skymind.io>

* - minor changes in flatten

Signed-off-by: Yurii <shyrma@skymind.io>

* - add function shape::getIndexOffsetOrdered

Signed-off-by: Yurii <shyrma@skymind.io>

* - correct shape::getIndexOffsetOrdered()

Signed-off-by: Yurii <shyrma@skymind.io>

* - move getIndexOffsetOrdered to flatten.h header in order to isolate this function

Signed-off-by: Yurii <shyrma@skymind.io>
2019-09-11 20:12:09 +03:00

186 lines
6.2 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include<cmath>
#include <DataTypeUtils.h>
#include<ops/declarable/helpers/betaInc.h>
#include <PointersManager.h>
namespace nd4j {
namespace ops {
namespace helpers {
///////////////////////////////////////////////////////////////////
// modified Lentzs algorithm for continued fractions,
// reference: Lentz, W.J. 1976, “Generating Bessel Functions in Mie Scattering Calculations Using Continued Fractions,”
template <typename T>
__device__ T continuedFractionCuda(const T a, const T b, const T x) {
extern __shared__ unsigned char shmem[];
T* coeffs = reinterpret_cast<T*>(shmem);
const T min = DataTypeUtils::min<T>() / DataTypeUtils::eps<T>();
const T aPlusb = a + b;
T val, delta, aPlus2i;
// first iteration
T c = 1;
T d = static_cast<T>(1) - aPlusb * x / (a + static_cast<T>(1));
if(math::nd4j_abs<T>(d) < min)
d = min;
d = static_cast<T>(1) / d;
T f = d;
for(uint i = 1; i <= maxIter; i += 2) {
aPlus2i = a + static_cast<T>(2*i);
/***** even part *****/
// d
d = static_cast<T>(1) + coeffs[i - 1] * d;
if(math::nd4j_abs<T>(d) < min)
d = min;
d = static_cast<T>(1) / d;
// c
c = static_cast<T>(1) + coeffs[i - 1] / c;
if(math::nd4j_abs<T>(c) < min)
c = min;
// f
f *= c * d;
/***** odd part *****/
// d
d = static_cast<T>(1) + coeffs[i] * d;
if(math::nd4j_abs<T>(d) < min)
d = min;
d = static_cast<T>(1) / d;
// c
c = static_cast<T>(1) + coeffs[i] / c;
if(math::nd4j_abs<T>(c) < min)
c = min;
// f
delta = c * d;
f *= delta;
// condition to stop loop
if(math::nd4j_abs<T>(delta - static_cast<T>(1)) <= DataTypeUtils::eps<T>())
return f;
}
return 1.f / 0.f; // no convergence, more iterations is required
}
///////////////////////////////////////////////////////////////////
// evaluates incomplete beta function for positive a and b, and x between 0 and 1.
template <typename T>
__device__ T betaIncCoreCuda(T a, T b, T x) {
const T gammaPart = lgamma(a) + lgamma(b) - lgamma(a + b);
const T front = math::nd4j_exp<T,T>(math::nd4j_log<T, T>(x) * a + math::nd4j_log<T, T>(1 - x) * b - gammaPart) / a;
if (x <= (a + static_cast<T>(1)) / (a + b + static_cast<T>(2)))
return front * continuedFractionCuda(a, b, x);
else // symmetry relation
return static_cast<T>(1) - front * continuedFractionCuda(b, a, static_cast<T>(1) - x);
}
///////////////////////////////////////////////////////////////////
template<typename T>
__global__ void betaIncForArrayCuda(const void* va, const Nd4jLong* aShapeInfo,
const void* vb, const Nd4jLong* bShapeInfo,
const void* vx, const Nd4jLong* xShapeInfo,
void* vz, const Nd4jLong* zShapeInfo) {
extern __shared__ unsigned char shmem[];
T* sharedMem = reinterpret_cast<T*>(shmem);
const Nd4jLong j = blockIdx.x; // one block per each element
Nd4jLong len = shape::length(xShapeInfo);
const T a = *(reinterpret_cast<const T*>(va) + shape::getIndexOffset(j, aShapeInfo));
const T b = *(reinterpret_cast<const T*>(vb) + shape::getIndexOffset(j, bShapeInfo));
const T x = *(reinterpret_cast<const T*>(vx) + shape::getIndexOffset(j, xShapeInfo));
T& z = *(reinterpret_cast<T*>(vz) + shape::getIndexOffset(j, zShapeInfo));
// t^{n-1} * (1 - t)^{n-1} is symmetric function with respect to x = 0.5
if(a == b && x == static_cast<T>(0.5)) {
z = static_cast<T>(0.5);
return;
}
if (x == static_cast<T>(0) || x == static_cast<T>(1)) {
z = x;
return;
}
if(threadIdx.x % 2 == 0) { /***** even part *****/
const int m = threadIdx.x + 1;
sharedMem[threadIdx.x] = m * (b - m) * x / ((a + 2 * m - static_cast<T>(1)) * (a + 2 * m));
}
else { /***** odd part *****/
const int m = threadIdx.x;
sharedMem[threadIdx.x] = -(a + m) * (a + b + m) * x / ((a + 2 * m + static_cast<T>(1)) * (a + 2 * m));
}
__syncthreads();
if(threadIdx.x == 0)
z = betaIncCoreCuda(a, b, x);
}
///////////////////////////////////////////////////////////////////
template<typename T>
static void betaIncForArrayCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
const void* va, const Nd4jLong* aShapeInfo,
const void* vb, const Nd4jLong* bShapeInfo,
const void* vx, const Nd4jLong* xShapeInfo,
void* vz, const Nd4jLong* zShapeInfo) {
betaIncForArrayCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(va, aShapeInfo, vb, bShapeInfo, vx, xShapeInfo, vz, zShapeInfo);
}
///////////////////////////////////////////////////////////////////
// overload betaInc for arrays, shapes of a, b and x must be the same !!!
void betaInc(nd4j::LaunchContext* context, const NDArray& a, const NDArray& b, const NDArray& x, NDArray& output) {
const int threadsPerBlock = maxIter;
const int blocksPerGrid = output.lengthOf();
const int sharedMem = output.sizeOfT() * threadsPerBlock + 128;
const auto xType = x.dataType();
PointersManager manager(context, "betaInc");
NDArray::prepareSpecialUse({&output}, {&a, &b, &x});
BUILD_SINGLE_SELECTOR(xType, betaIncForArrayCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), a.getSpecialBuffer(), a.getSpecialShapeInfo(), b.getSpecialBuffer(), b.getSpecialShapeInfo(), x.getSpecialBuffer(), x.getSpecialShapeInfo(), output.specialBuffer(), output.specialShapeInfo()), FLOAT_TYPES);
NDArray::registerSpecialUse({&output}, {&a, &b, &x});
manager.synchronize();
}
}
}
}