cavis/scalnet
Samuel Audet 029b84e2b7
Development updates (#9053)
* RL4J: Add generic update rule (#502)

Signed-off-by: Alexandre Boulanger <aboulang2002@yahoo.com>

* Shyrma reduce (#481)

* - start working on improving of cpu legacy code for reduce ops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - further work on improving legacy loops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - still working on improving reduce ops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - further work on improving reduce ops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - testing speed run of new reduce op

Signed-off-by: Yurii <iuriish@yahoo.com>

* - working on improvement of default loop for reduce op

Signed-off-by: Yurii <iuriish@yahoo.com>

* - update signatures of stuff which calls reduce ops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - make corrections in cuda reduce kernels

Signed-off-by: Yurii <iuriish@yahoo.com>

* - change loop for default case in broadcast legacy ops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - comment some shape stuff

Signed-off-by: Yurii <iuriish@yahoo.com>

* - comment unnecessary prints in RNGtests

Signed-off-by: Yurii <iuriish@yahoo.com>

* - finish to resolve conflicts after master has been merged

Signed-off-by: Yurii <iuriish@yahoo.com>

* - get rid of some compilation mistakes of cuda stuff

Signed-off-by: Yurii <iuriish@yahoo.com>

* - minor changes

Signed-off-by: Yurii <iuriish@yahoo.com>

* - further search for bug causing crash on java test

Signed-off-by: Yurii <iuriish@yahoo.com>

* - add scalar case in reduce_ ... exec stuff

Signed-off-by: Yurii <iuriish@yahoo.com>

* - minor corrections in NAtiveOps.cu

Signed-off-by: Yurii <iuriish@yahoo.com>

* - add switch to scalar case execReduceXD functions

Signed-off-by: Yurii <iuriish@yahoo.com>

* - add support for vectors old shape in ConstantShapeHelper::createShapeInfoWithNoUnitiesForReduce

Signed-off-by: Yurii <iuriish@yahoo.com>

* - correct cuda mirrorPad

Signed-off-by: Yurii <iuriish@yahoo.com>

* - add support for vectors old shape in cuda createShapeInfoWithNoUnitiesForReduce

Signed-off-by: Yurii <iuriish@yahoo.com>

Co-authored-by: raver119 <raver119@gmail.com>

* Add support for CUDA 11.0 (#492)

* Add support for CUDA 11.0

* libnd4j tweaks for CUDA 11

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* bindings update, again?

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* * Update versions of JavaCPP Presets for FFmpeg, OpenBLAS, and NumPy

* update API to match CUDA 8

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* * Update version of JavaCPP Presets for CPython

* C++ updated for cuDNN 8.0

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* one more test

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* one more test

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* one more test

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* 128-bit alignment for workspaces

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* change seed in 1 test

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fix dependecy duplication in python4j-parent pom

* Fix group id for in python4j-numpy

* few tests tweaked

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Remove macosx-x86_64-gpu from nd4j-tests-tensorflow

* few minor tweaks for IndexReduce

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* one test removed

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

Co-authored-by: raver119@gmail.com <raver119@gmail.com>
Co-authored-by: Serhii Shepel <9946053+sshepel@users.noreply.github.com>

* RL4J: Add SyncTrainer and AgentLearnerBuilder for a few algorithms (#504)

Signed-off-by: Alexandre Boulanger <aboulang2002@yahoo.com>

Co-authored-by: Alexandre Boulanger <44292157+aboulang2002@users.noreply.github.com>
Co-authored-by: Yurii Shyrma <iuriish@yahoo.com>
Co-authored-by: raver119 <raver119@gmail.com>
Co-authored-by: Serhii Shepel <9946053+sshepel@users.noreply.github.com>
2020-07-26 21:59:27 +09:00
..
project Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
src Refactor packages to fix split package issues (#411) 2020-04-29 11:19:26 +10:00
.gitignore Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
.scalafmt.conf Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
LICENSE Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
README.md fix link to scalnet examples (#8354) 2019-11-05 11:12:08 +11:00
build.sbt Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
buildmultiplescalaversions.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
pom.xml Development updates (#9053) 2020-07-26 21:59:27 +09:00
sbt-pom.xml Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00

README.md

ScalNet

ScalNet is a wrapper around Deeplearning4J emulating a Keras like API for deep learning.

ScalNet is released under an Apache 2.0 license. By contributing code to this repository, you agree to make your contribution available under an Apache 2.0 license.

ScalNet is STILL ALPHA and we are open sourcing this in an attempt to get feedback.

Come in to gitter if you are interested in learning more.

Prerequisites

  • JDK 8
  • Scala 2.11.+ or 2.10.x
  • SBT and Maven

How to build

ScalNet depends on Deeplearning4j and ND4J

sbt

ScalNet uses sbt, but due to resolving issues, you must have Maven available to copy some nd4j-native dependencies in your classpath, in order to run the examples.

This is automatically done in build.sbt and you don't need to do anything besides having maven installed.

If you use sbt in your own project, you will probably have to proceed the same way. When ScalNet will be using releases instead of snapshots, this won't be necessary anymore.

To build, use:

$ sbt package

Alternatively, for some quick testing or usage in Jupyter for example, run:

$ sbt assembly

To obtain a JAR file with all needed dependencies.

See the official sbt documentation for more on how to use sbt.

Maven

Althought Maven is mainly used for release management, you can use the provided pom.xml to import ScalNet as a Maven project.

Target for scala 2.11

$ change-scala-versions.sh "2.11"
$ mvn package

Target for scala 2.10

$ change-scala-versions.sh "2.10"
$ mvn package

How to use

sbt

libraryDependencies ++= "org.deeplearning4j" % "scalnet_2.11" % "0.9.2-SNAPSHOT"

Maven

<dependency>
    <groupId>org.deeplearning4j</groupId>
    <artifactId>scalnet_2.11</artifactId>
    <version>0.9.2-SNAPSHOT</version>
</dependency>

Getting started

ScalNet uses a Keras like API, wrapping deeplearning4j to make it more easier to start with.

Also, since you can call Java code from Scala, you can still use everything from deeplearning4j.

To see what ScalNet has to offer, run one of the [examples] (https://github.com/eclipse/deeplearning4j/tree/master/scalnet/src/test/scala/org/deeplearning4j/scalnet/examples) it ships with.

Please note that those examples are not state-of-the-art in any way, they're just enough to get you started.