cavis/libnd4j/include/ops/declarable/helpers/gammaMathFunc.h

104 lines
3.9 KiB
C++

/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
//
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#ifndef LIBND4J_GAMMAMATHFUNC_H
#define LIBND4J_GAMMAMATHFUNC_H
#include <ops/declarable/helpers/helpers.h>
#include "array/NDArray.h"
namespace sd {
namespace ops {
namespace helpers {
// calculate the digamma function for each element for array
void diGamma(sd::LaunchContext* context, const NDArray& x, NDArray& z);
// calculate the polygamma function
void polyGamma(sd::LaunchContext* context, const NDArray& n, const NDArray& x, NDArray& z);
// calculate the digamma function for one element
// implementation is based on serial representation written in terms of the Hurwitz zeta function as polygamma = (-1)^{n+1} * n! * zeta(n+1, x)
template <typename T>
_CUDA_HD T diGammaScalar(T x) {
const int xInt = static_cast<int>(x);
// negative and zero
if(x <= 0) {
if(x == xInt) // integer
return DataTypeUtils::infOrMax<T>();
else
return diGammaScalar<T>(1 - x) - M_PI / sd::math::nd4j_tan<T,T>(M_PI * x); // use reflection formula psi(1-x) = psi(x) + pi*cot(pi*x)
}
// positive integer
if(x == xInt && xInt <= 20) { // psi(n) = -Euler_Mascheroni_const + sum_from_k=1_to_n-1( 1/k ), for n = 1,2,3,...inf, we use this formula only for n <= 20 to avoid time consuming sum calculation for bigger n
T result = -0.577215664901532;
for (uint i = 1; i <= xInt - 1; ++i) {
result += static_cast<T>(1) / i;
}
return result;
}
// positive half-integer
if(x - xInt == 0.5 && xInt <= 20) { // psi(n+0.5) = -Euler_Mascheroni_const - 2*ln(2) + sum_from_k=1_to_n( 2/(2*k-1) ) , for n = 1,2,3,...inf, we use this formula only for n <= 20 to avoid time consuming sum calculation for bigger n
T result = -0.577215664901532 - 2 * sd::math::nd4j_log<T,T>(2);
for (uint i = 1; i <= xInt; ++i) {
result += static_cast<T>(2) / (2*i - 1);
}
return result;
}
// positive, smaller then 5; we should use number > 5 in order to have satisfactory accuracy in asymptotic expansion
if(x < 5)
return diGammaScalar<T>(1 + x) - static_cast<T>(1) / x; // recurrence formula psi(x) = psi(x+1) - 1/x.
// *** other positive **** //
// truncated expansion formula (from wiki)
// psi(x) = log(x) - 1/(2*x) - 1/(12*x^2) + 1/(120*x^4) - 1/(252*x^6) + 1/(240*x^8) - 5/(660*x^10) + 691/(32760*x^12) - 1/(12*x^14) + ...
if(x >= (sizeof(T) > 4 ? 1.e16 : 1.e8)) // if x is too big take into account only log(x)
return sd::math::nd4j_log<T,T>(x);
// coefficients used in truncated asymptotic expansion formula
const T coeffs[7] = {-(T)1/12, (T)1/120, -(T)1/252, (T)1/240, -(T)5/660, (T)691/32760, -(T)1/12};
// const T coeffs[7] = {-0.0833333333333333, 0.00833333333333333, -0.00396825396825397, 0.00416666666666667, -0.00757575757575758, 0.0210927960927961, -0.0833333333333333};
const T x2Inv = static_cast<T>(1) / (x * x);
T result = 0;
for (int i = 6; i >= 0; --i)
result = (result + coeffs[i]) * x2Inv;
return result + sd::math::nd4j_log<T,T>(x) - static_cast<T>(0.5) / x;
}
}
}
}
#endif //LIBND4J_GAMMAMATHFUNC_H