164 lines
6.9 KiB
C++
164 lines
6.9 KiB
C++
/* ******************************************************************************
|
|
*
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* See the NOTICE file distributed with this work for additional
|
|
* information regarding copyright ownership.
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Adam Gibson
|
|
//
|
|
|
|
#include <system/op_boilerplate.h>
|
|
#include <ops/declarable/headers/boolean.h>
|
|
|
|
#if NOT_EXCLUDED(OP_where_np)
|
|
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <ops/declarable/CustomOperations.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
CUSTOM_OP_IMPL(where_np, -1, 1, false, 0, 0) {
|
|
auto condition = INPUT_VARIABLE(0);
|
|
|
|
if (block.width() == 3) {
|
|
auto x = INPUT_VARIABLE(1);
|
|
auto y = INPUT_VARIABLE(2);
|
|
|
|
auto z = OUTPUT_VARIABLE(0);
|
|
int numMatches = 0;
|
|
// if cond matches x/y shape - we have per-element mask
|
|
if (condition->isSameShape(x)) {
|
|
// FIXME: for perf it might be better to issue memcpy here, and fill only mismatched values from either X or Y
|
|
if(y->isScalar()) {
|
|
if (y->isR()) {
|
|
for (int e = 0; e < condition->lengthOf(); e++) {
|
|
auto r = condition->e<bool>(e) ? y->e<double>(0)
|
|
: x->e<double>(e);
|
|
z->p(e, r);
|
|
}
|
|
} else {
|
|
for (int e = 0; e < condition->lengthOf(); e++) {
|
|
auto r = condition->e<bool>(e) ? y->e<Nd4jLong>(0)
|
|
: x->e<Nd4jLong>(e);
|
|
z->p(e, r);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (y->isR()) {
|
|
for (int e = 0; e < condition->lengthOf(); e++) {
|
|
if (condition->e<bool>(e)) {
|
|
auto r = y->e<double>(numMatches);
|
|
z->p(e, r);
|
|
numMatches++;
|
|
} else {
|
|
auto r = x->e<double>(e);
|
|
z->p(e, r);
|
|
}
|
|
}
|
|
} else {
|
|
for (int e = 0; e < condition->lengthOf(); e++) {
|
|
if (condition->e<bool>(e)) {
|
|
auto r = y->e<Nd4jLong>(numMatches);
|
|
z->p(e, r);
|
|
numMatches++;
|
|
} else {
|
|
auto r = x->e<Nd4jLong>(e);
|
|
z->p(e, r);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
REQUIRE_TRUE(condition->lengthOf() == x->sizeAt(0), 0, "Condition length should be equal to the dim0 of x/y to act as TAD-mask, but got %d instead", condition->lengthOf());
|
|
|
|
auto dims = ShapeUtils::evalDimsToExclude(x->rankOf(), {0});
|
|
auto tadsX = x->allTensorsAlongDimension(dims);
|
|
auto tadsY = y->allTensorsAlongDimension(dims);
|
|
auto tadsZ = z->allTensorsAlongDimension(dims);
|
|
|
|
for (int e = 0; e < tadsX.size(); e++) {
|
|
if (!condition->e<bool>(e))
|
|
tadsZ.at(e)->assign(tadsY.at(e));
|
|
else
|
|
tadsZ.at(e)->assign(tadsX.at(e));
|
|
}
|
|
}
|
|
} else {
|
|
// in this case we return 2D matrix, which basically contains coordinates fo true
|
|
|
|
REQUIRE_TRUE(block.width() == 1, 0, "Where op takes either 1 or 3 operands, But got %d operands instead", block.width());
|
|
// if (output->isEmpty())
|
|
Nd4jLong width = condition->rankOf();
|
|
|
|
sd::ops::Where op;
|
|
auto res(op.evaluate({condition}));
|
|
REQUIRE_OK(res.status());
|
|
NDArray* whereTrue = res.at(0);
|
|
|
|
if (whereTrue->isEmpty())
|
|
return ND4J_STATUS_OK;
|
|
for (Nd4jLong outNext = 0; outNext < width; ++outNext) {
|
|
auto output = OUTPUT_VARIABLE(outNext);
|
|
for (Nd4jLong e = 0; e < output->lengthOf(); ++e) {
|
|
output->p<Nd4jLong>(e, whereTrue->e<Nd4jLong>(e, outNext));
|
|
}
|
|
}
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
DECLARE_SHAPE_FN(where_np) {
|
|
auto shapes = SHAPELIST();
|
|
Nd4jLong *newShape;
|
|
if (block.width() == 3) {
|
|
auto inShape = inputShape->at(1);
|
|
COPY_SHAPE(inShape, newShape);
|
|
|
|
shapes->push_back(CONSTANT(newShape));
|
|
} else {
|
|
auto condition = INPUT_VARIABLE(0);
|
|
|
|
Nd4jLong numOfTrue = 0LL; //condition->reduceNumber(reduce::CountNonZero).e<Nd4jLong>(0);
|
|
for (Nd4jLong i = 0; i < condition->lengthOf(); ++i)
|
|
if (condition->e<bool>(i)) numOfTrue++;
|
|
|
|
// output shape - a tuple of rank(inShape) 1D tensors with numOfTrue len
|
|
if (numOfTrue) {
|
|
for (Nd4jLong e = 0; e < condition->rankOf(); ++e) {
|
|
shapes->push_back(ConstantShapeHelper::getInstance().vectorShapeInfo(numOfTrue, sd::DataType::INT64));
|
|
}
|
|
}
|
|
else {
|
|
shapes->push_back(ConstantShapeHelper::getInstance().emptyShapeInfo(sd::DataType::INT64));
|
|
}
|
|
}
|
|
return shapes;
|
|
}
|
|
|
|
DECLARE_TYPES(where_np) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(0, sd::DataType::BOOL)
|
|
->setAllowedInputTypes(1, sd::DataType::ANY)
|
|
->setAllowedInputTypes(2, sd::DataType::ANY)
|
|
->setAllowedOutputTypes( {ALL_FLOATS, ALL_INTS});
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif |