6aaca58506
* - profiling TrueBroadcastHelper Signed-off-by: Yurii <iuriish@yahoo.com> * - further improving of TrueBroadcastHelper Signed-off-by: Yurii <iuriish@yahoo.com> * - further profiling of broadcast op Signed-off-by: Yurii <iuriish@yahoo.com> * - implementation of broadcastShapeHelper which inserts unities in shapes of arrays to be broadcasted Signed-off-by: Yurii <iuriish@yahoo.com> * - provide additional method in ConstantShapeHelper class for deducing broadcast shapes with unities Signed-off-by: Yurii <iuriish@yahoo.com> * - provide new NativeOps helpers for usual and true broadcast methods Signed-off-by: Yurii <iuriish@yahoo.com> * enable bert profiler Signed-off-by: raver119 <raver119@gmail.com> * - delete unnessesary tests Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com> |
||
---|---|---|
.github | ||
arbiter | ||
datavec | ||
deeplearning4j | ||
docs | ||
jumpy | ||
libnd4j | ||
nd4j | ||
nd4s | ||
pydatavec | ||
pydl4j | ||
rl4j | ||
scalnet | ||
.gitignore | ||
CONTRIBUTING.md | ||
Jenkinsfile | ||
LICENSE | ||
README.md | ||
change-cuda-versions.sh | ||
change-scala-versions.sh | ||
perform-release.sh | ||
pom.xml |
README.md
Monorepo of Deeplearning4j
Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to deeplearning4j:
- https://github.com/eclipse/deeplearning4j/tree/master/libnd4j
- https://github.com/eclipse/deeplearning4j/tree/master/nd4j
- https://github.com/eclipse/deeplearning4j/tree/master/datavec
- https://github.com/eclipse/deeplearning4j/tree/master/arbiter
- https://github.com/eclipse/deeplearning4j/tree/master/nd4s
- https://github.com/eclipse/deeplearning4j/tree/master/rl4j
- https://github.com/eclipse/deeplearning4j/tree/master/scalnet
- https://github.com/eclipse/deeplearning4j/tree/master/pydl4j
- https://github.com/eclipse/deeplearning4j/tree/master/jumpy
- https://github.com/eclipse/deeplearning4j/tree/master/pydatavec
To build everything, we can use commands like
./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx
or
mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true
An example of GPU "CC" or compute capability is 61 for Titan X Pascal.
Want some examples?
We have separate repository with various examples available: https://github.com/eclipse/deeplearning4j-examples
In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/eclipse/deeplearning4j-examples/tree/master/tutorials