* initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored buffer() and shapeInfo() methods usage with NDArray class. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt Graph class methods to use const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt choose op to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt where op shape method to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt lstsq op to use constant empty shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt matrix_diag_part op shape routine to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt determinant ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt mean_pairwssqerr_loss ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for loss ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt log_loss op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt dilation2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted deconv2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted dynamicRNN op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for lstm layer ops. Signed-off-by: shugeo <sgazeos@gmail.com> * few updates Signed-off-by: raver119@gmail.com <raver119@gmail.com> * first cuda tweak Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Adopt constant shapes for sconv2d ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes for gru ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes with shape methods for segment ops and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with unsorted_segment_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with gamma op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods of reduce_stddev ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for reduce_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape method for squeeze op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt strided_slice shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored concat op shape method to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape method for mirror_pad op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted split op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted tile ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Added const cast for mkldnn routines handles. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored logSoftMaxForVector_ routine to conform with proper data and shape pointer casts. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetic changes to proper usage of constant pointers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple shape comparators for strides and addBias helpers to proper use data pointers with inplace option. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored depthToSpace helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored histogram helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored im2col helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored gather and gatherND helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage on percentile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed gather shape with helpers and range buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with space to depth helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage and constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with LUP decomposition> Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored onehot_ helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pad and prefix to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactoed softmax helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed space to batch helpers to use buffers properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed stack and split helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with sparse to dense helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with mindistance_ helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with tile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with legacy pairwise bool ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple of methods to adopt constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed broadcasting with constant shape." Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const usage with inplace reverse and constant shapes with legacy reduction. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored sort to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected sort for constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with special methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored Context to conform with constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * CUDA broadcasting headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * pairwise/indexreduce/random headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored native ops to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * legacy reduce3/scalar headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected pullRow signature and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected routines to proper use of constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with NDArray tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed native ops tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed special concat routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with test. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with a test. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored TAD.h and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored calcStrides* routines to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed miscelaneous errors with constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected definitions for declared functions. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed const shapes with shape routines. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed shape method for broadcastable case. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * xw_plus_b BP shape fn restored Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed signatures with broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Repaired backprops shape methods for a set of operations. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored broadcast bool for cuda. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods for 3 args with const qualifier. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed a couple of kernel signatures for broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels signatures for const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise methods to persistent buffers and shapes usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with scalar kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored indexreduce kernels signatures to use const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise bool kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored random special ops to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored native ops to conform with const shapes and buffers under cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetical changes only. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes and buffers error. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected start pos routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored helpers to use proper methods instead. Signed-off-by: shugeo <sgazeos@gmail.com> * bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected const shape cases with sort and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes for sort. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored kernel declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernel declarations to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed segment helpers kernels declarations and so on to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with segment and solve helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernel declaration with adjustWeight helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed cuda implementations for constant shape helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted const shape usage with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted top_k kernels to use const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernels declarations to adopt const shapes with helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored NDArray definitions to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes with image suppression helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Slight improvement with buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with definitions. Signed-off-by: shugeo <sgazeos@gmail.com> * minor updates on cpu side Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored const shape usage with ConstantDescritor and native ops with cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tear and tile kernels to adopt with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * softmax_loop fix Signed-off-by: raver119 <raver119@gmail.com> * update missing signature Signed-off-by: raver119@gmail.com <raver119@gmail.com> * softmax again Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more missing consts Signed-off-by: raver119 <raver119@gmail.com> * new methods updated Signed-off-by: raver119@gmail.com <raver119@gmail.com> Co-authored-by: shugeo <sgazeos@gmail.com>
309 lines
19 KiB
C++
309 lines
19 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
// @author Yurii Shyrma
|
|
|
|
|
|
#include <system/op_boilerplate.h>
|
|
#if NOT_EXCLUDED(OP_conv1d)
|
|
|
|
#include <ops/declarable/DeclarableOp.h>
|
|
#include <ops/declarable/CustomOperations.h>
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
|
|
|
|
|
|
CUSTOM_OP_IMPL(conv1d, 2, 1, false, 0, 5) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iW, iC] (NWC) or [bS, iC, iW] (NCW)
|
|
auto weights = INPUT_VARIABLE(1); // [kW, iC, oC], [oC, iC, kW], [oC, kW, iC]
|
|
auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC]
|
|
|
|
auto output = OUTPUT_NULLIFIED(0); // [bS, oW, oC] (NWC) or [bS, oC, oW] (NCW)
|
|
|
|
int kW = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0));// filter(kernel) width
|
|
int sW = INT_ARG(1); // strides width
|
|
int pW = INT_ARG(2); // paddings width
|
|
int dW = INT_ARG(3); // dilations width
|
|
int paddingMode = INT_ARG(4); // 0-VALID, 1-SAME, 2-CAUSAL
|
|
int isNCW = block.getIArguments()->size() > 5 ? !INT_ARG(5) : 1; // INT_ARG(4): 0-NCW, 1-NWC
|
|
int wFormat = block.getIArguments()->size() > 6 ? INT_ARG(6) : 0; // 0 - [kW, iC, oC], 1 - [oC, iC, kW], 2 - [oC, kW, iC]
|
|
|
|
const int rank = 3;
|
|
REQUIRE_TRUE(input->rankOf() == rank, 0, "CUSTOM CONV1D OP: rank of input array must be equal to %i, but got %i instead !", rank, input->rankOf());
|
|
REQUIRE_TRUE(weights->rankOf() == rank, 0, "CUSTOM CONV1D OP: rank of weights array must be equal to %i, but got %i instead !", rank, weights->rankOf());
|
|
|
|
int indIOioC, indIiW, indWoC(0 == wFormat ? 2 : 0);
|
|
if(!isNCW) {
|
|
indIOioC = 2; indIiW = 1;
|
|
}
|
|
else {
|
|
indIOioC = 1; indIiW = 2;
|
|
}
|
|
|
|
int bS = input->sizeAt(0); // batch size
|
|
int iW = input->sizeAt(indIiW); // input width
|
|
int iC = input->sizeAt(indIOioC); // input channels
|
|
int oC = weights->sizeAt(indWoC); // output channels
|
|
|
|
std::vector<Nd4jLong> expectedWeightsShape = 0 == wFormat ? std::vector<Nd4jLong>({kW, iC, oC}) : (1 == wFormat ? std::vector<Nd4jLong>({oC, iC, kW}) : std::vector<Nd4jLong>({oC, kW, iC}));
|
|
REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM CONV1D OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str());
|
|
if (bias)
|
|
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM CONV1D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
|
|
|
|
std::vector<Nd4jLong> reshapeForInput, reshapeForOutput;
|
|
if(!isNCW) {
|
|
reshapeForInput = {input->sizeAt(0), 1, input->sizeAt(1), input->sizeAt(2)}; // [bS, iW, iC] -> [bS, 1, iW, iC]
|
|
reshapeForOutput = {output->sizeAt(0), 1, output->sizeAt(1), output->sizeAt(2)}; // [bS, oW, oC] -> [bS, 1, oW, oC]
|
|
}
|
|
else {
|
|
reshapeForInput = {input->sizeAt(0), input->sizeAt(1), 1, input->sizeAt(2)}; // [bS, iC, iW] -> [bS, iC, 1, iW]
|
|
reshapeForOutput = {output->sizeAt(0), output->sizeAt(1), 1, output->sizeAt(2)}; // [bS, oC, oW] -> [bS, oC, 1, oW]
|
|
}
|
|
|
|
auto inputReshaped = input ->reshape(input->ordering(), reshapeForInput);
|
|
auto outputReshaped = output ->reshape(output->ordering(), reshapeForOutput, false);
|
|
auto weightsReshaped = weights->reshape(weights->ordering(), {1, weights->sizeAt(0), weights->sizeAt(1), weights->sizeAt(2)}); // [kW, iC, oC] -> [1, kW, iC, oC]
|
|
|
|
sd::ops::conv2d conv2d;
|
|
const Nd4jStatus status = conv2d.execute({&inputReshaped, &weightsReshaped, bias}, {&outputReshaped}, {}, {1,kW, 1,sW, 0,pW, 1,dW, paddingMode, !isNCW, wFormat}, {});
|
|
if (status != ND4J_STATUS_OK)
|
|
return status;
|
|
|
|
// ConvolutionUtils::conv2d(block, &inputReshaped, &weightsReshaped, bias, &outputReshaped, 1,kW, 1,sW, 0,pW, 1,dW, paddingMode, isNCW, wFormat);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
|
|
DECLARE_SHAPE_FN(conv1d) {
|
|
|
|
auto inputShapeInfo = inputShape->at(0);
|
|
auto weightsShapeInfo = inputShape->at(1);
|
|
Nd4jLong const* biasShapeInfo = block.width() > 2 ? inputShape->at(2) : nullptr;
|
|
|
|
int kW = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(shape::sizeAt(weightsShapeInfo, 0)); // filter(kernel) width
|
|
int sW = INT_ARG(1); // strides width
|
|
int pW = INT_ARG(2); // paddings width
|
|
int dW = INT_ARG(3); // dilations width
|
|
int paddingMode = INT_ARG(4); // 0-VALID, 1-SAME
|
|
int isNCW = block.getIArguments()->size() > 5 ? !INT_ARG(5) : 1; // INT_ARG(4): 1-NWC, 0-NCW
|
|
int wFormat = block.getIArguments()->size() > 6 ? INT_ARG(6) : 0; // 0 - [kW, iC, oC], 1 - [oC, iC, kW], 2 - [oC, kW, iC]
|
|
|
|
int indIOioC, indIiW, indWoC(0 == wFormat ? 2 : 0);
|
|
if(!isNCW) {
|
|
indIOioC = 2; indIiW = 1;
|
|
}
|
|
else {
|
|
indIOioC = 1; indIiW = 2;
|
|
}
|
|
|
|
const int rank = 3;
|
|
REQUIRE_TRUE(inputShapeInfo[0] == rank, 0, "CUSTOM CONV1D OP: rank of input array must be equal to %i, but got %i instead !", rank, inputShapeInfo);
|
|
REQUIRE_TRUE(weightsShapeInfo[0] == rank, 0, "CUSTOM CONV1D OP: rank of weights array must be equal to %i, but got %i instead !", rank, weightsShapeInfo);
|
|
|
|
int bS = inputShapeInfo[1]; // batch size
|
|
int iW = inputShapeInfo[indIiW+1]; // input width
|
|
int iC = inputShapeInfo[indIOioC+1]; // input channels
|
|
int oC = weightsShapeInfo[indWoC+1]; // output channels
|
|
|
|
std::vector<Nd4jLong> expectedWeightsShape = 0 == wFormat ? std::vector<Nd4jLong>({kW, iC, oC}) : (1 == wFormat ? std::vector<Nd4jLong>({oC, iC, kW}) : std::vector<Nd4jLong>({oC, kW, iC}));
|
|
REQUIRE_TRUE(ShapeUtils::areShapesEqual(weightsShapeInfo, expectedWeightsShape), 0, "CUSTOM CONV1D OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weightsShapeInfo).c_str());
|
|
if (biasShapeInfo)
|
|
REQUIRE_TRUE(biasShapeInfo[0] <= 2 && oC == shape::length(biasShapeInfo), 0, "CUSTOM CONV1D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, biasShapeInfo[0], shape::length(biasShapeInfo));
|
|
|
|
int oH, oW; // output height, width
|
|
ConvolutionUtils::calcOutSizePool2D(oH,oW, 1,kW, 1,sW, 0,pW, 1,dW, 1,iW, paddingMode);
|
|
|
|
Nd4jLong* outputShapeInfo = nullptr;
|
|
ALLOCATE(outputShapeInfo, block.getWorkspace(), shape::shapeInfoLength(rank), Nd4jLong);
|
|
|
|
outputShapeInfo[0] = 3;
|
|
outputShapeInfo[1] = bS;
|
|
|
|
if (isNCW) {
|
|
outputShapeInfo[2] = oC;
|
|
outputShapeInfo[3] = oW;
|
|
} else {
|
|
outputShapeInfo[2] = oW;
|
|
outputShapeInfo[3] = oC;
|
|
}
|
|
|
|
ShapeUtils::updateStridesAndType(outputShapeInfo, weightsShapeInfo, shape::order(weightsShapeInfo));
|
|
|
|
return SHAPELIST(CONSTANT(outputShapeInfo));
|
|
}
|
|
|
|
DECLARE_TYPES(conv1d) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(0, {ALL_FLOATS, ALL_INTS, DataType::QINT8, DataType::QINT16})
|
|
->setAllowedInputTypes(1, {ALL_FLOATS})
|
|
->setAllowedInputTypes(2, {ALL_FLOATS})
|
|
->setAllowedOutputTypes(0, {ALL_FLOATS});
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
CUSTOM_OP_IMPL(conv1d_bp, 3, 2, false, 0, 5) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iW, iC] (NWC) or [bS, iC, iW] (NCW)
|
|
auto weights = INPUT_VARIABLE(1); // [kW, iC, oC], [oC, iC, kW], [oC, kW, iC]
|
|
auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC]
|
|
auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oW, oC] (NWC) or [bS, oC, oW] (NCW), epsilon_next
|
|
|
|
auto gradI = OUTPUT_NULLIFIED(0); // [bS, iW, iC] (NWC) or [bS, iC, iW] (NCW), epsilon
|
|
auto gradW = OUTPUT_NULLIFIED(1); // [kW, iC, oC], [oC, iC, kW], [oC, kW, iC]
|
|
auto gradB = block.width() > 3 ? OUTPUT_NULLIFIED(2) : nullptr; // [oC]
|
|
|
|
int kW = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0));// filter(kernel) width
|
|
int sW = INT_ARG(1); // strides width
|
|
int pW = INT_ARG(2); // paddings width
|
|
int dW = INT_ARG(3); // dilations width
|
|
int paddingMode = INT_ARG(4); // 0-VALID, 1-SAME, 2-CAUSAL
|
|
int isNCW = block.getIArguments()->size() > 5 ? !INT_ARG(5) : 1; // INT_ARG(4): 1-NWC, 0-NCW
|
|
int wFormat = block.getIArguments()->size() > 6 ? INT_ARG(6) : 0; // 0 - [kW, iC, oC], 1 - [oC, iC, kW], 2 - [oC, kW, iC]
|
|
|
|
const int rank = 3;
|
|
REQUIRE_TRUE(input->rankOf() == rank, 0, "CUSTOM CONV1D_BP OP: rank of input array must be equal to %i, but got %i instead !", rank, input->rankOf());
|
|
REQUIRE_TRUE(weights->rankOf() == rank, 0, "CUSTOM CONV1D_BP OP: rank of weights array must be equal to %i, but got %i instead !", rank, weights->rankOf());
|
|
REQUIRE_TRUE(gradO->rankOf() == rank, 0, "CUSTOM CONV1D_BP OP: rank of output gradients (next epsilon) array must be equal to %i, but got %i instead !", rank, gradO->rankOf());
|
|
|
|
int indIOioC, indIiW, indWoC(0 == wFormat ? 2 : 0);
|
|
if(!isNCW) {
|
|
indIOioC = 2; indIiW = 1;
|
|
}
|
|
else {
|
|
indIOioC = 1; indIiW = 2;
|
|
}
|
|
|
|
const int bS = input->sizeAt(0); // batch size
|
|
const int iW = input->sizeAt(indIiW); // input width
|
|
const int iC = input->sizeAt(indIOioC); // input channels
|
|
const int oC = weights->sizeAt(indWoC); // output channels
|
|
|
|
int trueoH, trueoW; // true output height, width
|
|
ConvolutionUtils::calcOutSizePool2D(trueoH,trueoW, 1,kW, 1,sW, 0,pW, 1,dW, 1,iW, paddingMode);
|
|
|
|
std::vector<Nd4jLong> expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoW, 0,indIOioC,indIiW});
|
|
std::vector<Nd4jLong> expectedWeightsShape = 0 == wFormat ? std::vector<Nd4jLong>({kW, iC, oC}) : (1 == wFormat ? std::vector<Nd4jLong>({oC, iC, kW}) : std::vector<Nd4jLong>({oC, kW, iC}));
|
|
REQUIRE_TRUE(gradO->isSameShape(expectedGradOShape), 0, "CUSTOM CONV1D_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradO).c_str());
|
|
REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM CONV1D_BP OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str());
|
|
if(bias)
|
|
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM CONV1D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
|
|
|
|
std::vector<Nd4jLong> reshapeForInput, reshapeForGradO;
|
|
if(!isNCW) {
|
|
reshapeForInput = {input->sizeAt(0), 1, input->sizeAt(1), input->sizeAt(2)}; // [bS, iW, iC] -> [bS, 1, iW, iC]
|
|
reshapeForGradO = {gradO->sizeAt(0), 1, gradO->sizeAt(1), gradO->sizeAt(2)}; // [bS, oW, oC] -> [bS, 1, oW, oC]
|
|
}
|
|
else {
|
|
reshapeForInput = {input->sizeAt(0), input->sizeAt(1), 1, input->sizeAt(2)}; // [bS, iC, iW] -> [bS, iC, 1, iW]
|
|
reshapeForGradO = {gradO->sizeAt(0), gradO->sizeAt(1), 1, gradO->sizeAt(2)}; // [bS, oC, oW] -> [bS, oC, 1, oW]
|
|
}
|
|
|
|
auto inputReshaped = input ->reshape(input->ordering(), reshapeForInput);
|
|
auto gradIReshaped = gradI ->reshape(gradI->ordering(), reshapeForInput, false);
|
|
auto gradOReshaped = gradO ->reshape(gradO->ordering(), reshapeForGradO);
|
|
auto weightsReshaped = weights->reshape(weights->ordering(),{1, weights->sizeAt(0), weights->sizeAt(1), weights->sizeAt(2)}); // [kW, iC, oC] -> [1, kW, iC, oC]
|
|
auto gradWReshaped = gradW ->reshape(gradW->ordering(), {1, weights->sizeAt(0), weights->sizeAt(1), weights->sizeAt(2)}, false);// [kW, iC, oC] -> [1, kW, iC, oC]
|
|
|
|
sd::ops::conv2d_bp conv2dBP;
|
|
auto status = conv2dBP.execute({&inputReshaped, &weightsReshaped, bias, &gradOReshaped}, {&gradIReshaped, &gradWReshaped, gradB}, {}, {1,kW, 1,sW, 0,pW, 1,dW, paddingMode, !isNCW, wFormat}, {});
|
|
if (status != ND4J_STATUS_OK)
|
|
return status;
|
|
|
|
// ConvolutionUtils::conv2dBP(block, &inputReshaped, &weightsReshaped, bias, &gradOReshaped, &gradIReshaped, &gradWReshaped, gradB, 1,kW, 1,sW, 0,pW, 1,dW, paddingMode, isNCW, wFormat);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
|
|
DECLARE_SHAPE_FN(conv1d_bp) {
|
|
|
|
auto inputShapeInfo = inputShape->at(0); // [bS, iW, iC] (NWC) or [bS, iC, iW] (NCW)
|
|
auto weightsShapeInfo = inputShape->at(1); // [kW, iC, oC], [oC, iC, kW], [oC, kW, iC]
|
|
Nd4jLong const* biasShapeInfo = block.width() > 3 ? inputShape->at(2) : nullptr; // [oC]
|
|
Nd4jLong const* gradOShapeInfo = block.width() > 3 ? inputShape->at(3) : inputShape->at(2); // [bS, oW, oC] (NWC) or [bS, oC, oW] (NCW), epsilon_next
|
|
|
|
const int rank = 3;
|
|
REQUIRE_TRUE(inputShapeInfo[0] == rank, 0, "CUSTOM CONV1D_BP OP: rank of input array must be equal to %i, but got %i instead !", rank, inputShapeInfo[0]);
|
|
REQUIRE_TRUE(weightsShapeInfo[0] == rank, 0, "CUSTOM CONV1D_BP OP: rank of weights array must be equal to %i, but got %i instead !", rank, weightsShapeInfo[0]);
|
|
REQUIRE_TRUE(gradOShapeInfo[0] == rank, 0, "CUSTOM CONV1D_BP OP: rank of output gradients (next epsilon) array must be equal to %i, but got %i instead !", rank, gradOShapeInfo[0]);
|
|
|
|
int kW = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(shape::sizeAt(weightsShapeInfo, 0));// filter(kernel) width
|
|
int sW = INT_ARG(1); // strides width
|
|
int pW = INT_ARG(2); // paddings width
|
|
int dW = INT_ARG(3); // dilations width
|
|
int paddingMode = INT_ARG(4); // 0-VALID, 1-SAME
|
|
int isNCW = block.getIArguments()->size() > 5 ? !INT_ARG(5) : 1; // INT_ARG(4): 1-NWC, 0-NCW
|
|
int wFormat = block.getIArguments()->size() > 6 ? INT_ARG(6) : 0; // 0 - [kW, iC, oC], 1 - [oC, iC, kW], 2 - [oC, kW, iC]
|
|
|
|
int indIOioC, indIiW, indWoC(0 == wFormat ? 2 : 0);
|
|
if(!isNCW) {
|
|
indIOioC = 2; indIiW = 1;
|
|
}
|
|
else {
|
|
indIOioC = 1; indIiW = 2;
|
|
}
|
|
|
|
const int bS = inputShapeInfo[1]; // batch size
|
|
const int iW = inputShapeInfo[indIiW+1]; // input width
|
|
const int iC = inputShapeInfo[indIOioC+1]; // input channels
|
|
const int oC = weightsShapeInfo[indWoC+1]; // output channels
|
|
|
|
int trueoH, trueoW; // true output height, width
|
|
ConvolutionUtils::calcOutSizePool2D(trueoH,trueoW, 1,kW, 1,sW, 0,pW, 1,dW, 1,iW, paddingMode);
|
|
|
|
std::vector<Nd4jLong> expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoW, 0,indIOioC,indIiW});
|
|
std::vector<Nd4jLong> expectedWeightsShape = 0 == wFormat ? std::vector<Nd4jLong>({kW, iC, oC}) : (1 == wFormat ? std::vector<Nd4jLong>({oC, iC, kW}) : std::vector<Nd4jLong>({oC, kW, iC}));
|
|
REQUIRE_TRUE(ShapeUtils::areShapesEqual(gradOShapeInfo, expectedGradOShape), 0, "CUSTOM CONV1D_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradOShapeInfo).c_str());
|
|
REQUIRE_TRUE(ShapeUtils::areShapesEqual(weightsShapeInfo, expectedWeightsShape), 0, "CUSTOM CONV1D_BP OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weightsShapeInfo).c_str());
|
|
if(biasShapeInfo)
|
|
REQUIRE_TRUE(biasShapeInfo[0] <= 2 && oC == shape::length(biasShapeInfo), 0, "CUSTOM CONV1D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, biasShapeInfo[0], shape::length(biasShapeInfo));
|
|
|
|
auto gradIshapeInfo = ShapeBuilders::copyShapeInfoAndType(inputShapeInfo, gradOShapeInfo, false, block.getWorkspace());
|
|
auto gradWshapeInfo = ShapeBuilders::copyShapeInfoAndType(weightsShapeInfo, gradOShapeInfo, false, block.getWorkspace());
|
|
|
|
if(biasShapeInfo) {
|
|
auto gradBshapeInfo = ShapeBuilders::copyShapeInfoAndType(biasShapeInfo, gradOShapeInfo, false, block.getWorkspace());
|
|
return SHAPELIST(CONSTANT(gradIshapeInfo), CONSTANT(gradWshapeInfo), CONSTANT(gradBshapeInfo));
|
|
}
|
|
|
|
return SHAPELIST(CONSTANT(gradIshapeInfo), CONSTANT(gradWshapeInfo));
|
|
}
|
|
|
|
DECLARE_TYPES(conv1d_bp) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(0, {ALL_FLOATS, ALL_INTS, DataType::QINT8, DataType::QINT16})
|
|
->setAllowedInputTypes(1, {ALL_FLOATS})
|
|
->setAllowedInputTypes(2, {ALL_FLOATS})
|
|
->setAllowedInputTypes(3, {ALL_FLOATS})
|
|
->setAllowedOutputTypes(0, {ALL_FLOATS})
|
|
->setAllowedOutputTypes(1, {ALL_FLOATS});
|
|
}
|
|
|
|
|
|
|
|
}
|
|
}
|
|
|
|
#endif
|