* initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored buffer() and shapeInfo() methods usage with NDArray class. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt Graph class methods to use const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt choose op to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt where op shape method to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt lstsq op to use constant empty shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt matrix_diag_part op shape routine to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt determinant ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt mean_pairwssqerr_loss ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for loss ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt log_loss op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt dilation2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted deconv2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted dynamicRNN op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for lstm layer ops. Signed-off-by: shugeo <sgazeos@gmail.com> * few updates Signed-off-by: raver119@gmail.com <raver119@gmail.com> * first cuda tweak Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Adopt constant shapes for sconv2d ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes for gru ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes with shape methods for segment ops and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with unsorted_segment_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with gamma op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods of reduce_stddev ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for reduce_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape method for squeeze op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt strided_slice shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored concat op shape method to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape method for mirror_pad op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted split op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted tile ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Added const cast for mkldnn routines handles. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored logSoftMaxForVector_ routine to conform with proper data and shape pointer casts. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetic changes to proper usage of constant pointers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple shape comparators for strides and addBias helpers to proper use data pointers with inplace option. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored depthToSpace helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored histogram helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored im2col helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored gather and gatherND helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage on percentile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed gather shape with helpers and range buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with space to depth helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage and constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with LUP decomposition> Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored onehot_ helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pad and prefix to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactoed softmax helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed space to batch helpers to use buffers properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed stack and split helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with sparse to dense helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with mindistance_ helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with tile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with legacy pairwise bool ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple of methods to adopt constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed broadcasting with constant shape." Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const usage with inplace reverse and constant shapes with legacy reduction. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored sort to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected sort for constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with special methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored Context to conform with constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * CUDA broadcasting headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * pairwise/indexreduce/random headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored native ops to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * legacy reduce3/scalar headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected pullRow signature and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected routines to proper use of constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with NDArray tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed native ops tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed special concat routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with test. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with a test. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored TAD.h and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored calcStrides* routines to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed miscelaneous errors with constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected definitions for declared functions. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed const shapes with shape routines. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed shape method for broadcastable case. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * xw_plus_b BP shape fn restored Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed signatures with broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Repaired backprops shape methods for a set of operations. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored broadcast bool for cuda. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods for 3 args with const qualifier. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed a couple of kernel signatures for broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels signatures for const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise methods to persistent buffers and shapes usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with scalar kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored indexreduce kernels signatures to use const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise bool kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored random special ops to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored native ops to conform with const shapes and buffers under cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetical changes only. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes and buffers error. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected start pos routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored helpers to use proper methods instead. Signed-off-by: shugeo <sgazeos@gmail.com> * bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected const shape cases with sort and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes for sort. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored kernel declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernel declarations to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed segment helpers kernels declarations and so on to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with segment and solve helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernel declaration with adjustWeight helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed cuda implementations for constant shape helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted const shape usage with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted top_k kernels to use const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernels declarations to adopt const shapes with helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored NDArray definitions to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes with image suppression helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Slight improvement with buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with definitions. Signed-off-by: shugeo <sgazeos@gmail.com> * minor updates on cpu side Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored const shape usage with ConstantDescritor and native ops with cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tear and tile kernels to adopt with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * softmax_loop fix Signed-off-by: raver119 <raver119@gmail.com> * update missing signature Signed-off-by: raver119@gmail.com <raver119@gmail.com> * softmax again Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more missing consts Signed-off-by: raver119 <raver119@gmail.com> * new methods updated Signed-off-by: raver119@gmail.com <raver119@gmail.com> Co-authored-by: shugeo <sgazeos@gmail.com>
360 lines
15 KiB
C++
360 lines
15 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
* Copyright (c) 2019 Konduit K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com, created on 29/10/17.
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
#include <system/op_boilerplate.h>
|
|
#if NOT_EXCLUDED(OP_batchnorm)
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
#include<ops/declarable/helpers/batchnorm.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
CUSTOM_OP_IMPL(batchnorm, 3, 1, false, 1, 2) {
|
|
|
|
auto input = INPUT_VARIABLE(0);
|
|
auto mean = INPUT_VARIABLE(1);
|
|
auto variance = INPUT_VARIABLE(2);
|
|
NDArray* gamma = nullptr;
|
|
NDArray* beta = nullptr;
|
|
|
|
auto output = OUTPUT_VARIABLE(0);
|
|
|
|
const bool applyScale = (bool)INT_ARG(0);
|
|
const bool applyOffset = (bool)INT_ARG(1);
|
|
const double epsilon = T_ARG(0);
|
|
|
|
if(applyScale)
|
|
gamma = INPUT_VARIABLE(3);
|
|
if(applyOffset)
|
|
beta = INPUT_VARIABLE(3 + (int)applyScale);
|
|
|
|
const int numOfIntArgs = block.getIArguments()->size();
|
|
const int inRank = input->rankOf();
|
|
|
|
// get axes args to normalize input array over
|
|
std::vector<int> axes;
|
|
if(numOfIntArgs > 2)
|
|
for(int i = 2; i < numOfIntArgs; ++i)
|
|
axes.push_back(INT_ARG(i));
|
|
else
|
|
axes.push_back(inRank-1); // default dimension to reduce along is last dimension
|
|
|
|
const uint numOfAxes = axes.size();
|
|
REQUIRE_TRUE(numOfAxes <= inRank, 0, "BATCHNORM op: too big number of input axes to normalize over, expected number should be less or equal to rank of input array, but got %i and %i correspondingly !", numOfAxes, inRank);
|
|
|
|
// evaluate expected shape for mean, variance and gamma. These 3 arrays should have identical shapes
|
|
// for example if input shape is {2,3,4,5,6} and axes = {1,3}, then expected shape would be {1,3,1,5,1}, and if axes = {3}, then expected shape would be {5}
|
|
std::vector<Nd4jLong> expShape;
|
|
if(numOfAxes == 1)
|
|
expShape.push_back(input->sizeAt(axes[0]));
|
|
else { // get, for example, something like {1, inputDim1, 1, inputDim3, 1} if axes = {1, 3}
|
|
expShape = std::vector<Nd4jLong>(inRank, 1);
|
|
for(uint i = 0; i < numOfAxes; ++i)
|
|
expShape[axes[i]] = input->sizeAt(axes[i]);
|
|
}
|
|
|
|
REQUIRE_TRUE(mean->isSameShape(expShape) , 0, "BATCHNORM op: wrong shape of mean array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(mean).c_str());
|
|
REQUIRE_TRUE(variance->isSameShape(expShape), 0, "BATCHNORM op: wrong shape of variance array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(variance).c_str());
|
|
if(gamma)
|
|
REQUIRE_TRUE(gamma->isSameShape(expShape), 0, "BATCHNORM op: wrong shape of gamma array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(gamma).c_str());
|
|
if(beta)
|
|
REQUIRE_TRUE(beta->isSameShape(expShape), 0, "BATCHNORM op: wrong shape of beta array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(beta).c_str());
|
|
|
|
// types of all input arrays should be the same
|
|
for(unsigned long i = 1; i < block.width(); ++i)
|
|
REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM op: types of all input arrays should be the same !");
|
|
|
|
nd4j_debug("MKL-DNN is not used for batchnorm!\n", 0);
|
|
|
|
// formula: output = gamma * ((input - mean) / sqrt(variance + epsilon)) + beta
|
|
// auto v = input->varianceAlongDimension(variance::SummaryStatsVariance, false, ShapeUtils::evalDimsToExclude(input->rankOf(), axes));
|
|
// auto m = input->reduceAlongDimension(sd::reduce::Mean, ShapeUtils::evalDimsToExclude(input->rankOf(), axes));
|
|
|
|
helpers::batchnorm(input, mean, variance, gamma, beta, output, axes, epsilon);
|
|
|
|
// NDArray stdInv = *v + epsilon;
|
|
// stdInv.applyTransform(transform::Reciprocal); // 1 / (variance + epsilon)
|
|
// stdInv.applyTransform(transform::Sqrt); // 1 / (variance + epsilon)^0.5
|
|
// if(applyScale)
|
|
// stdInv *= *gamma;
|
|
|
|
// // empty array with same shape as input
|
|
// input->applyBroadcast(sd::broadcast::Subtract, axes, m, output);
|
|
// output->applyBroadcast(sd::broadcast::Multiply, axes, &stdInv);
|
|
|
|
// if(applyOffset)
|
|
// output->applyBroadcast(sd::broadcast::Add, axes, beta);
|
|
|
|
// delete v;
|
|
// delete m;
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
DECLARE_TYPES(batchnorm) {
|
|
getOpDescriptor()->setAllowedInputTypes({ALL_FLOATS})->setSameMode(true);
|
|
}
|
|
|
|
DECLARE_SHAPE_FN(batchnorm) {
|
|
|
|
auto inShapeInfo = inputShape->at(0);
|
|
DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(inShapeInfo));
|
|
|
|
auto outShapeInfo = ShapeBuilders::copyShapeInfoAndType(inShapeInfo, outType, false, block.getWorkspace()); // output shape is identical to input shape
|
|
|
|
return SHAPELIST(CONSTANT(outShapeInfo));
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
CUSTOM_OP_IMPL(batchnorm_bp, 4, 3, false, 1, 2) {
|
|
|
|
NDArray* input = INPUT_VARIABLE(0);
|
|
NDArray* mean = INPUT_VARIABLE(1);
|
|
NDArray* variance = INPUT_VARIABLE(2);
|
|
NDArray* gamma = nullptr;
|
|
NDArray* beta = nullptr;
|
|
NDArray* dLdO = INPUT_VARIABLE(block.width() - 1); // next epsilon
|
|
|
|
NDArray* dLdI = OUTPUT_VARIABLE(0);
|
|
NDArray* dLdM = OUTPUT_VARIABLE(1);
|
|
NDArray* dLdV = OUTPUT_VARIABLE(2);
|
|
NDArray* dLdG = nullptr;
|
|
NDArray* dLdB = nullptr;
|
|
|
|
const bool applyScale = (bool)INT_ARG(0);
|
|
const bool applyOffset = (bool)INT_ARG(1);
|
|
const float epsilon = T_ARG(0);
|
|
|
|
if(applyScale) {
|
|
gamma = INPUT_VARIABLE(3);
|
|
dLdG = OUTPUT_VARIABLE(3);
|
|
}
|
|
if(applyOffset) {
|
|
beta = INPUT_VARIABLE(3 + (int)applyScale);
|
|
dLdB = OUTPUT_VARIABLE(3 + (int)applyScale);
|
|
}
|
|
|
|
const int numOfIntArgs = block.getIArguments()->size();
|
|
const int inRank = input->rankOf();
|
|
|
|
// get axes args to normalize input array over
|
|
std::vector<int> axes;
|
|
if(numOfIntArgs > 2)
|
|
for(int i = 2; i < numOfIntArgs; ++i)
|
|
axes.push_back(INT_ARG(i));
|
|
else
|
|
axes.push_back(inRank-1); // default dimension to reduce along is last dimension
|
|
|
|
const uint numOfAxes = axes.size();
|
|
REQUIRE_TRUE(numOfAxes <= inRank, 0, "BATCHNORM_BP op: too big number of input axes to normalize over, expected number should be less or equal to rank of input array, but got %i and %i correspondingly !", numOfAxes, inRank);
|
|
|
|
// evaluate expected shape for mean, variance and gamma. These 3 arrays should have identical shapes
|
|
// for example if input shape is {2,3,4,5,6} and axes = {1,3}, then expected shape would be {1,3,1,5,1}, and if axes = {3}, then expected shape would be {5}
|
|
std::vector<Nd4jLong> expShape;
|
|
if(numOfAxes == 1)
|
|
expShape.push_back(input->sizeAt(axes[0]));
|
|
else { // get, for example, something like {1, inputDim1, 1, inputDim3, 1} if axes = {1, 3}
|
|
expShape = std::vector<Nd4jLong>(inRank, 1);
|
|
for(uint i = 0; i < numOfAxes; ++i)
|
|
expShape[axes[i]] = input->sizeAt(axes[i]);
|
|
}
|
|
|
|
REQUIRE_TRUE(mean->isSameShape(expShape), 0, "BATCHNORM_BP op: wrong shape of mean array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(mean).c_str());
|
|
REQUIRE_TRUE(variance->isSameShape(expShape), 0, "BATCHNORM_BP op: wrong shape of variance array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(variance).c_str());
|
|
if(gamma)
|
|
REQUIRE_TRUE(gamma->isSameShape(expShape), 0, "BATCHNORM_BP op: wrong shape of gamma array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(gamma).c_str());
|
|
if(beta)
|
|
REQUIRE_TRUE(beta->isSameShape(expShape), 0, "BATCHNORM_BP op: wrong shape of beta array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(beta).c_str());
|
|
|
|
REQUIRE_TRUE(input->isSameShape(dLdO), 0, "BATCHNORM_BP op: wrong shape of output gradients array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(input).c_str(), ShapeUtils::shapeAsString(dLdO).c_str());
|
|
|
|
// types of all input arrays should be the same (except dLdO)
|
|
for(unsigned long i = 1; i < block.width() - 2; ++i)
|
|
REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM_BP op: types of arrays (input, mean, variance, gamma, beta) should be the same !");
|
|
|
|
// ***** calculations ***** //
|
|
|
|
// notations:
|
|
// f = g * (gamma * ((x - m) / (v + eps)^0.5) + beta) -> means dLdO * ff_output, g = dLdO
|
|
// stdInv = 1 / (v + eps)^0.5
|
|
// N - batch size (product of spatial dimensions)
|
|
|
|
// derivatives:
|
|
// dLdI = dfdx + dfdm*dmdx + dfdv*(dvdm*dmdx + dvdx)
|
|
|
|
// dfdx = gamma*stdInv*g;
|
|
// dfdm = -gamma*stdInv*g_sum;
|
|
// dmdx = 1/N;
|
|
// dvdx = 2 * (x - m) / N
|
|
// dvdm = -2 * [(x - m)]_sum / N
|
|
// dfdv = -0.5 * [g*(x - m)]_sum * stdInv^3, drop gamma here for calc convenience
|
|
|
|
// finally:
|
|
// dLdI = gamma * ( stdInv * (g - g_sum/N) + (2/N) * dfdv * (dvdm/2 + (x - m)) )
|
|
|
|
// dLdG = (g * (x - m))_sum * stdInv
|
|
// dLdB = g_sum
|
|
|
|
// variance = input->varianceAlongDimension(variance::SummaryStatsVariance, false, ShapeUtils::evalDimsToExclude(input->rankOf(), axes));
|
|
// mean = input->reduceAlongDimension(sd::reduce::Mean, ShapeUtils::evalDimsToExclude(input->rankOf(), axes));
|
|
|
|
const auto excludedAxes = ShapeUtils::evalDimsToExclude(inRank, axes);
|
|
const bool keepUnitiesInShape = inRank == mean->rankOf();
|
|
|
|
// inverse batch size 1/N
|
|
const float Ninv = 1.f * shape::tadLength(input->shapeInfo(), axes.data(), axes.size()) / input->lengthOf();
|
|
|
|
// input - mean
|
|
NDArray xMinusMean(input); // empty array with same shape as input
|
|
input->applyBroadcast(sd::broadcast::Subtract, axes, *mean, xMinusMean);
|
|
|
|
// stdInv
|
|
NDArray stdInv = *variance + epsilon;
|
|
stdInv.applyTransform(transform::Reciprocal, stdInv); // 1 / (variance + epsilon)
|
|
stdInv.applyTransform(transform::Sqrt, stdInv); // 1 / (variance + epsilon)^0.5
|
|
|
|
// dvdm (use dLdM as storage for dvdm)
|
|
xMinusMean.reduceAlongDimension(sd::reduce::Sum, *dLdM, excludedAxes, keepUnitiesInShape);
|
|
*dLdM *= -Ninv;
|
|
|
|
// g_sum
|
|
auto gSum = dLdO->reduceAlongDimension(sd::reduce::Sum, excludedAxes, keepUnitiesInShape);
|
|
|
|
// dLdB
|
|
if(applyOffset)
|
|
dLdB->assign(gSum);
|
|
|
|
// stdInv * (g - g_sum/N) (use dLdI as storage for this expression)
|
|
gSum *= Ninv;
|
|
dLdO->applyBroadcast(sd::broadcast::Subtract, axes, gSum, *dLdI);
|
|
dLdI->applyBroadcast(sd::broadcast::Multiply, axes, stdInv, *dLdI);
|
|
|
|
// dLdV <- [g*(x - m)]_sum
|
|
(xMinusMean * *dLdO).reduceAlongDimension(sd::reduce::Sum, *dLdV, excludedAxes, keepUnitiesInShape);
|
|
|
|
// dLdG
|
|
*dLdV *= stdInv;
|
|
if(applyScale)
|
|
dLdG->assign(dLdV);
|
|
|
|
// (2 / N) * dfdv (use dLdV as storage for dfdv)
|
|
*dLdV *= stdInv*stdInv; // dLdV*stdInv * stdInv^2
|
|
*dLdV *= -Ninv; // -0.5f * (2 / N);
|
|
|
|
// dfdv * (dvdm + (x - m)) (use xMinusMean as storage for this expression)
|
|
xMinusMean.applyBroadcast(sd::broadcast::Add, axes, *dLdM, xMinusMean);
|
|
xMinusMean.applyBroadcast(sd::broadcast::Multiply, axes, *dLdV, xMinusMean);
|
|
|
|
// dLdI
|
|
*dLdI += xMinusMean;
|
|
if(applyScale)
|
|
dLdI->applyBroadcast(sd::broadcast::Multiply, axes, *gamma, *dLdI);
|
|
|
|
*dLdM = 0; // put zeros so far
|
|
*dLdV = 0; // put zeros so far
|
|
|
|
// java code
|
|
// NDArray std = *variance + epsilon;
|
|
// std.applyTransform(transform::Reciprocal); // 1 / (variance + epsilon)
|
|
// std.applyTransform(transform::Sqrt); // 1 / (variance + epsilon)^0.5
|
|
// NDArray xMu(input);
|
|
// input->applyBroadcast(sd::broadcast::Subtract, axes, mean, &xMu);
|
|
// NDArray xHat(input);
|
|
// xMu.applyBroadcast(sd::broadcast::Multiply, axes, &std, &xHat);
|
|
// NDArray dxhat(input);
|
|
// dLdO->applyBroadcast(sd::broadcast::Multiply, axes, gamma, &dxhat);
|
|
// NDArray temp = dxhat*xMu;
|
|
// temp.reduceAlongDimension(reduce::Sum, dLdV, excludedAxes, keepUnitiesInShape);
|
|
// *dLdV *= -0.5f * std*std*std;
|
|
// NDArray* dxmu1 = dxhat.reduceAlongDimension(reduce::Sum, excludedAxes, keepUnitiesInShape);
|
|
// *dxmu1 *= -std;
|
|
// NDArray* dxmu2 = xMu.reduceAlongDimension(reduce::Sum, excludedAxes, keepUnitiesInShape);
|
|
// *dxmu2 *= *dLdV * (-2.f/N);
|
|
// NDArray dLdmu = *dxmu1 + *dxmu2;
|
|
// dLdmu *= (1.f /N);
|
|
// *dLdV *= (2.f/N);
|
|
// dxhat.applyBroadcast(sd::broadcast::Multiply, axes, &std);
|
|
// xMu.applyBroadcast(sd::broadcast::Multiply, axes, dLdV);
|
|
// dxhat += xMu;
|
|
// dxhat.applyBroadcast(sd::broadcast::Add, axes, &dLdmu, dLdI);
|
|
// delete dxmu1;
|
|
// delete dxmu2;
|
|
// xHat *= *dLdO;
|
|
// xHat.reduceAlongDimension(reduce::Sum, dLdG, excludedAxes, keepUnitiesInShape);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
DECLARE_TYPES(batchnorm_bp) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(0, sd::DataType::ANY)
|
|
->setAllowedInputTypes(1, sd::DataType::ANY)
|
|
->setAllowedInputTypes(2, sd::DataType::ANY)
|
|
->setAllowedInputTypes(3, {ALL_FLOATS})
|
|
->setAllowedInputTypes(4, sd::DataType::ANY)
|
|
->setAllowedInputTypes(5, sd::DataType::ANY)
|
|
->setAllowedOutputTypes({ALL_FLOATS});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
DECLARE_SHAPE_FN(batchnorm_bp) {
|
|
|
|
Nd4jLong const* inShapeInfo = inputShape->at(0);
|
|
Nd4jLong const* meanShapeInfo = inputShape->at(1);
|
|
|
|
const bool applyScale = (bool)INT_ARG(0);
|
|
const bool applyOffset = (bool)INT_ARG(1);
|
|
|
|
DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(inShapeInfo));
|
|
|
|
auto shapes = SHAPELIST();
|
|
|
|
// dLdI shapeInfo
|
|
shapes->push_back(ConstantShapeHelper::getInstance()->createShapeInfo(outType, inShapeInfo));
|
|
|
|
// dLdM shapeInfo
|
|
shapes->push_back(ConstantShapeHelper::getInstance()->createShapeInfo(outType, meanShapeInfo));
|
|
|
|
// dLdV shapeInfo (same as dLdM)
|
|
shapes->push_back(shapes->at(shapes->size()-1));
|
|
|
|
// dLdG shapeInfo (same as dLdM)
|
|
if(applyScale)
|
|
shapes->push_back(shapes->at(shapes->size()-1));
|
|
|
|
// dLdB shapeInfo (same as dLdM)
|
|
if(applyOffset)
|
|
shapes->push_back(shapes->at(shapes->size()-1));
|
|
|
|
return shapes;
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
|
|
#endif
|