125 lines
3.8 KiB
C++
125 lines
3.8 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// Created by Yurii Shyrma on 02.01.2018
|
|
//
|
|
|
|
#include <hhSequence.h>
|
|
#include <householder.h>
|
|
#include <NDArrayFactory.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
HHsequence::HHsequence(const NDArray& vectors, const NDArray& coeffs, const char type): _vectors(vectors), _coeffs(coeffs) {
|
|
|
|
_diagSize = nd4j::math::nd4j_min(_vectors.sizeAt(0), _vectors.sizeAt(1));
|
|
_shift = 0;
|
|
_type = type;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
void HHsequence::_mulLeft(NDArray& matrix) {
|
|
|
|
const int rows = _vectors.sizeAt(0);
|
|
const int cols = _vectors.sizeAt(1);
|
|
const int inRows = matrix.sizeAt(0);
|
|
|
|
NDArray* block(nullptr);
|
|
|
|
for(int i = _diagSize - 1; i >= 0; --i) {
|
|
|
|
if(_type == 'u') {
|
|
|
|
block = new NDArray(matrix({inRows-rows+_shift+ i,inRows, 0,0}, true));
|
|
T _x = _coeffs.e<T>(i);
|
|
Householder<T>::mulLeft(*block, _vectors({i + 1 + _shift, rows, i, i+1}, true), _x);
|
|
_coeffs.p<T>(i, _x);
|
|
}
|
|
else {
|
|
|
|
block = new NDArray(matrix({inRows-cols+_shift+i,inRows, 0,0}, true));
|
|
T _x = _coeffs.e<T>(i);
|
|
Householder<T>::mulLeft(*block, _vectors({i, i+1, i + 1 + _shift, cols}, true), _x);
|
|
_coeffs.p<T>(i, _x);
|
|
}
|
|
|
|
delete block;
|
|
}
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
NDArray HHsequence::getTail(const int idx) const {
|
|
|
|
|
|
int first = idx + 1 + _shift;
|
|
|
|
if(_type == 'u')
|
|
return _vectors({first, -1, idx, idx+1}, true);
|
|
else
|
|
return _vectors({idx, idx+1, first, -1}, true);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
void HHsequence::_applyTo(NDArray& dest) {
|
|
|
|
int size = _type == 'u' ? _vectors.sizeAt(0) : _vectors.sizeAt(1);
|
|
|
|
if(dest.rankOf() != 2 || (dest.sizeAt(0) != size && dest.sizeAt(1) != size))
|
|
dest = NDArrayFactory::create(dest.ordering(), {size, size}, dest.dataType(), dest.getContext());
|
|
dest.setIdentity();
|
|
|
|
for(int k = _diagSize - 1; k >= 0; --k) {
|
|
|
|
int curNum = size - k - _shift;
|
|
if(curNum < 1 || (k + 1 + _shift) >= size )
|
|
continue;
|
|
auto block = dest({dest.sizeAt(0)-curNum,dest.sizeAt(0), dest.sizeAt(1)-curNum,dest.sizeAt(1)}, true);
|
|
T _x = _coeffs.e<T>(k);
|
|
|
|
Householder<T>::mulLeft(block, getTail(k), _x);
|
|
|
|
_coeffs.p<T>(k, _x);
|
|
}
|
|
}
|
|
|
|
|
|
void HHsequence::applyTo(NDArray& dest) {
|
|
auto xType = _coeffs.dataType();
|
|
|
|
BUILD_SINGLE_SELECTOR(xType, _applyTo, (dest), FLOAT_TYPES);
|
|
}
|
|
|
|
void HHsequence::mulLeft(NDArray& matrix) {
|
|
auto xType = _coeffs.dataType();
|
|
|
|
BUILD_SINGLE_SELECTOR(xType, _mulLeft, (matrix), FLOAT_TYPES);
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void HHsequence::_applyTo, (nd4j::NDArray &dest), FLOAT_TYPES);
|
|
BUILD_SINGLE_TEMPLATE(template void HHsequence::_mulLeft, (NDArray& matrix), FLOAT_TYPES);
|
|
}
|
|
}
|
|
}
|