Go to file
Yurii Shyrma 66b84b38cf
Shyrma mmul (#58)
* - get rid of some copy procedures in mmulHelper ops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - further work on embedding cuda api for batched gemm (cublasGemmBatchedEx) in our mmulHelper class

Signed-off-by: Yurii <iuriish@yahoo.com>

* - further work on cuda batched gamm api

Signed-off-by: Yurii <iuriish@yahoo.com>

* - write own cuda kernel performing batched gemm

Signed-off-by: Yurii <iuriish@yahoo.com>

* missing include in MmulHelper

Signed-off-by: raver119 <raver119@gmail.com>

* - forgot to keep in code previous correct kernels for mmulNxN, since it may happen that new onw will fail for some reason in future

Signed-off-by: Yurii <iuriish@yahoo.com>

* disable old tensordot

Signed-off-by: raver119 <raver119@gmail.com>

* - rewrite cuda kernels for usualGemm and usualGemv

Signed-off-by: Yurii <iuriish@yahoo.com>

* - profiling mmul helpers

Signed-off-by: Yurii <iuriish@yahoo.com>

* - prints to check shapes were added

Signed-off-by: Yurii <iuriish@yahoo.com>

* - correct type of output array Cin mmulNxN

Signed-off-by: Yurii <iuriish@yahoo.com>

* - take into account possible nans in C array

Signed-off-by: Yurii <iuriish@yahoo.com>

* slightly change numThreads message

Signed-off-by: raver119 <raver119@gmail.com>

* - make corrections in accordance to given notes in pr review

Signed-off-by: Yurii <iuriish@yahoo.com>
2019-11-19 15:39:36 +02:00
.github Update contributing and issue/PR templates (#7934) 2019-06-22 16:21:27 +10:00
arbiter Various fixes (#43) 2019-11-14 19:38:20 +11:00
datavec Various fixes (#43) 2019-11-14 19:38:20 +11:00
deeplearning4j Mist gradient check (#57) 2019-11-19 00:12:59 +11:00
docs Merge 2019-11-16 23:21:45 +11:00
gym-java-client RL4J: Make a few fixes (#8303) 2019-10-31 13:41:52 +09:00
jumpy Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
libnd4j Shyrma mmul (#58) 2019-11-19 15:39:36 +02:00
nd4j Shyrma mmul (#58) 2019-11-19 15:39:36 +02:00
nd4s [WIP] Weekly update of repo (#8390) 2019-11-13 17:15:18 +03:00
pydatavec non-inplace pydatavec transform processes (#8326) 2019-10-30 15:59:54 +01:00
pydl4j Fix backend dependencies for tests (#189) 2019-08-29 12:54:48 +09:00
rl4j Various fixes (#43) 2019-11-14 19:38:20 +11:00
scalnet fix link to scalnet examples (#8354) 2019-11-05 11:12:08 +11:00
.gitignore Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
CONTRIBUTING.md Various fixes (#43) 2019-11-14 19:38:20 +11:00
Jenkinsfile Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
LICENSE Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
README.md Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
change-cuda-versions.sh Update dependencies to just released JavaCPP and JavaCV 1.5.2 2019-11-07 17:57:34 +09:00
change-scala-versions.sh Version upgrades (#199) 2019-08-30 14:35:27 +10:00
perform-release.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
pom.xml Drop unused profiles for artifacts distribution i8388 (#48) 2019-11-15 09:56:28 +02:00

README.md

Monorepo of Deeplearning4j

Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to deeplearning4j:

To build everything, we can use commands like

./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx

or

mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true

An example of GPU "CC" or compute capability is 61 for Titan X Pascal.

Want some examples?

We have separate repository with various examples available: https://github.com/eclipse/deeplearning4j-examples

In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/eclipse/deeplearning4j-examples/tree/master/tutorials