183 lines
6.7 KiB
Java
183 lines
6.7 KiB
Java
/*
|
|
* ******************************************************************************
|
|
* *
|
|
* *
|
|
* * This program and the accompanying materials are made available under the
|
|
* * terms of the Apache License, Version 2.0 which is available at
|
|
* * https://www.apache.org/licenses/LICENSE-2.0.
|
|
* *
|
|
* * Unless required by applicable law or agreed to in writing, software
|
|
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* * License for the specific language governing permissions and limitations
|
|
* * under the License.
|
|
* *
|
|
* * SPDX-License-Identifier: Apache-2.0
|
|
* *****************************************************************************
|
|
*/
|
|
|
|
|
|
import org.nd4j.python4j.*;
|
|
import org.junit.Assert;
|
|
import org.junit.Test;
|
|
import org.junit.runner.RunWith;
|
|
import org.junit.runners.Parameterized;
|
|
import org.nd4j.linalg.api.buffer.DataType;
|
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
|
import org.nd4j.linalg.factory.Nd4j;
|
|
import org.nd4j.nativeblas.OpaqueDataBuffer;
|
|
|
|
import javax.annotation.concurrent.NotThreadSafe;
|
|
import java.lang.reflect.Method;
|
|
import java.util.ArrayList;
|
|
import java.util.Arrays;
|
|
import java.util.Collection;
|
|
import java.util.List;
|
|
|
|
@NotThreadSafe
|
|
@RunWith(Parameterized.class)
|
|
public class PythonNumpyBasicTest {
|
|
private DataType dataType;
|
|
private long[] shape;
|
|
|
|
public PythonNumpyBasicTest(DataType dataType, long[] shape, String dummyArg) {
|
|
this.dataType = dataType;
|
|
this.shape = shape;
|
|
}
|
|
|
|
@Parameterized.Parameters(name = "{index}: Testing with DataType={0}, shape={2}")
|
|
public static Collection params() {
|
|
DataType[] types = new DataType[] {
|
|
DataType.BOOL,
|
|
DataType.FLOAT16,
|
|
DataType.BFLOAT16,
|
|
DataType.FLOAT,
|
|
DataType.DOUBLE,
|
|
DataType.INT8,
|
|
DataType.INT16,
|
|
DataType.INT32,
|
|
DataType.INT64,
|
|
DataType.UINT8,
|
|
DataType.UINT16,
|
|
DataType.UINT32,
|
|
DataType.UINT64
|
|
};
|
|
|
|
long[][] shapes = new long[][]{
|
|
new long[]{2, 3},
|
|
new long[]{3},
|
|
new long[]{1},
|
|
new long[]{} // scalar
|
|
};
|
|
|
|
|
|
List<Object[]> ret = new ArrayList<>();
|
|
for (DataType type: types){
|
|
for (long[] shape: shapes){
|
|
ret.add(new Object[]{type, shape, Arrays.toString(shape)});
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
@Test
|
|
public void testConversion(){
|
|
try(PythonGIL pythonGIL = PythonGIL.lock()) {
|
|
INDArray arr = Nd4j.zeros(dataType, shape);
|
|
PythonObject npArr = PythonTypes.convert(arr);
|
|
INDArray arr2 = PythonTypes.<INDArray>getPythonTypeForPythonObject(npArr).toJava(npArr);
|
|
if (dataType == DataType.BFLOAT16){
|
|
arr = arr.castTo(DataType.FLOAT);
|
|
}
|
|
Assert.assertEquals(arr,arr2);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
@Test
|
|
public void testExecution() {
|
|
try(PythonGIL pythonGIL = PythonGIL.lock()) {
|
|
List<PythonVariable> inputs = new ArrayList<>();
|
|
INDArray x = Nd4j.ones(dataType, shape);
|
|
INDArray y = Nd4j.zeros(dataType, shape);
|
|
INDArray z = (dataType == DataType.BOOL)?x:x.mul(y.add(2));
|
|
z = (dataType == DataType.BFLOAT16)? z.castTo(DataType.FLOAT): z;
|
|
PythonType<INDArray> arrType = PythonTypes.get("numpy.ndarray");
|
|
inputs.add(new PythonVariable<>("x", arrType, x));
|
|
inputs.add(new PythonVariable<>("y", arrType, y));
|
|
List<PythonVariable> outputs = new ArrayList<>();
|
|
PythonVariable<INDArray> output = new PythonVariable<>("z", arrType);
|
|
outputs.add(output);
|
|
String code = (dataType == DataType.BOOL)?"z = x":"z = x * (y + 2)";
|
|
if (shape.length == 0){ // scalar special case
|
|
code += "\nimport numpy as np\nz = np.asarray(float(z), dtype=x.dtype)";
|
|
}
|
|
PythonExecutioner.exec(code, inputs, outputs);
|
|
INDArray z2 = output.getValue();
|
|
|
|
Assert.assertEquals(z.dataType(), z2.dataType());
|
|
Assert.assertEquals(z, z2);
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
@Test
|
|
public void testInplaceExecution() {
|
|
try(PythonGIL pythonGIL = PythonGIL.lock()) {
|
|
if (dataType == DataType.BOOL || dataType == DataType.BFLOAT16)return;
|
|
if (shape.length == 0) return;
|
|
List<PythonVariable> inputs = new ArrayList<>();
|
|
INDArray x = Nd4j.ones(dataType, shape);
|
|
INDArray y = Nd4j.zeros(dataType, shape);
|
|
INDArray z = x.mul(y.add(2));
|
|
// Nd4j.getAffinityManager().ensureLocation(z, AffinityManager.Location.HOST);
|
|
PythonType<INDArray> arrType = PythonTypes.get("numpy.ndarray");
|
|
inputs.add(new PythonVariable<>("x", arrType, x));
|
|
inputs.add(new PythonVariable<>("y", arrType, y));
|
|
List<PythonVariable> outputs = new ArrayList<>();
|
|
PythonVariable<INDArray> output = new PythonVariable<>("x", arrType);
|
|
outputs.add(output);
|
|
String code = "x *= y + 2";
|
|
PythonExecutioner.exec(code, inputs, outputs);
|
|
INDArray z2 = output.getValue();
|
|
Assert.assertEquals(x.dataType(), z2.dataType());
|
|
Assert.assertEquals(z.dataType(), z2.dataType());
|
|
Assert.assertEquals(x, z2);
|
|
Assert.assertEquals(z, z2);
|
|
Assert.assertEquals(x.data().pointer().address(), z2.data().pointer().address());
|
|
if("CUDA".equalsIgnoreCase(Nd4j.getExecutioner().getEnvironmentInformation().getProperty("backend"))){
|
|
Assert.assertEquals(getDeviceAddress(x), getDeviceAddress(z2));
|
|
}
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
private static long getDeviceAddress(INDArray array) {
|
|
if(!"CUDA".equalsIgnoreCase(Nd4j.getExecutioner().getEnvironmentInformation().getProperty("backend"))){
|
|
throw new IllegalStateException("Cannot ge device pointer for non-CUDA device");
|
|
}
|
|
|
|
//Use reflection here as OpaqueDataBuffer is only available on BaseCudaDataBuffer and BaseCpuDataBuffer - not DataBuffer/BaseDataBuffer
|
|
// due to it being defined in nd4j-native-api, not nd4j-api
|
|
try {
|
|
Class<?> c = Class.forName("org.nd4j.linalg.jcublas.buffer.BaseCudaDataBuffer");
|
|
Method m = c.getMethod("getOpaqueDataBuffer");
|
|
OpaqueDataBuffer db = (OpaqueDataBuffer) m.invoke(array.data());
|
|
long address = db.specialBuffer().address();
|
|
return address;
|
|
} catch (Throwable t){
|
|
throw new RuntimeException("Error getting OpaqueDataBuffer", t);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|