cavis/libnd4j/include/ops/declarable/generic/nn/recurrent/dynamicBidirectionalRNN.cpp
raver119 320924278d
Legacy API changes (#441)
* initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* another initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* another initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* one more initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored buffer() and shapeInfo() methods usage with NDArray class.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt Graph class methods to use const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt choose op to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt where op shape method to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt lstsq op to use constant empty shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt matrix_diag_part op shape routine to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt determinant ops to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt mean_pairwssqerr_loss ops to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape methods for loss ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt log_loss op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape methods for ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt dilation2d ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted deconv2d ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted dynamicRNN op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for lstm layer ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few updates

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* first cuda tweak

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Adopt constant shapes for sconv2d ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt constant shapes for gru ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt constant shapes with shape methods for segment ops and so on.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted constant shapes with unsorted_segment_* ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted constant shapes with gamma op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods of reduce_stddev ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for reduce_* ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape method for squeeze op.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt strided_slice shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored concat op shape method to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape method for mirror_pad op.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted split op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted tile ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Added const cast for mkldnn routines handles.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored logSoftMaxForVector_ routine to conform with proper data and shape pointer casts.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Cosmetic changes to proper usage of constant pointers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored a couple shape comparators for strides and addBias helpers to proper use data pointers with inplace option.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored depthToSpace helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored histogram helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored im2col helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored gather and gatherND helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage on percentile helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed gather shape with helpers and range buffer usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with space to depth helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage and constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with LUP decomposition>

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored onehot_ helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pad and prefix to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactoed softmax helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed space to batch helpers to use buffers properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed stack and split helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with sparse to dense helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with mindistance_ helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with tile helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage with legacy pairwise bool ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored a couple of methods to adopt constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed broadcasting with constant shape."

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const usage with inplace reverse and constant shapes with legacy reduction.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored legacy ops with const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored sort to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected sort for constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage with special methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored Context to conform with constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* CUDA broadcasting headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* pairwise/indexreduce/random headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored native ops to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* legacy reduce3/scalar headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Corrected pullRow signature and tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected routines to proper use of constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored tests to use constant shapes properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored legacy ops tests to use constant shapes properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage with NDArray tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed native ops tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed special concat routine.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with test.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with a test.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored TAD.h and tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored calcStrides* routines to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed miscelaneous errors with constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* NativeOps const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Corrected definitions for declared functions.

Signed-off-by: shugeo <sgazeos@gmail.com>

* NativeOps const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed const shapes with shape routines.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed shape method for broadcastable case.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* xw_plus_b BP shape fn restored

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed signatures with broadcasting.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Repaired backprops shape methods for a set of operations.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored broadcast bool for cuda.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored methods for 3 args with const qualifier.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed a couple of kernel signatures for broadcasting.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels signatures for const buffers and shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise methods to persistent buffers and shapes usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt const to buffers and shapes with kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt const to buffers and shapes with scalar kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored indexreduce kernels signatures to use const buffers and shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise kernels to adopt cons shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise bool kernels to adopt cons shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored random special ops to conform with const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored native ops to conform with const shapes and buffers under cuda platform.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Cosmetical changes only.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes and buffers error.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected start pos routine.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored methods to conform with const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored helpers to use proper methods instead.

Signed-off-by: shugeo <sgazeos@gmail.com>

* bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed execScalar declaration.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed execScalar declaration.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected const shape cases with sort and so on.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes for sort.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored kernel declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected kernel declarations to adopt const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed segment helpers kernels declarations and so on to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shape usage with segment and solve helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernel declaration with adjustWeight helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed cuda implementations for constant shape helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted const shape usage with kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted top_k kernels to use const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected kernels declarations to adopt const shapes with helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored NDArray definitions to adopt const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes with image suppression helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Slight improvement with buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage with tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shape usage with definitions.

Signed-off-by: shugeo <sgazeos@gmail.com>

* minor updates on cpu side

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored const shape usage with ConstantDescritor and native ops with cuda platform.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored tear and tile kernels to adopt with const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* softmax_loop fix

Signed-off-by: raver119 <raver119@gmail.com>

* update missing signature

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* softmax again

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* few more missing consts

Signed-off-by: raver119 <raver119@gmail.com>

* new methods updated

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

Co-authored-by: shugeo <sgazeos@gmail.com>
2020-05-09 08:06:14 +03:00

229 lines
15 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma, created on 05.04.2018
//
#include <ops/declarable/CustomOperations.h>
namespace sd {
namespace ops {
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(dynamic_bidirectional_rnn, 7, 4, false, 0, 0) {
auto x = INPUT_VARIABLE(0); // input [time x bS x inSize] or [bS x time x inSize], shape depends on timeMajor parameter
auto WxFW = INPUT_VARIABLE(1); // input-to-hidden weights for forward RNN, [inSize x numUnitsFW]
auto WhFW = INPUT_VARIABLE(2); // hidden-to-hidden weights for forward RNN, [numUnitsFW x numUnitsFW]
auto bFW = INPUT_VARIABLE(3); // biases for forward RNN, [2*numUnitsFW]
auto WxBW = INPUT_VARIABLE(4); // input-to-hidden weights for backward RNN, [inSize x numUnitsBW]
auto WhBW = INPUT_VARIABLE(5); // hidden-to-hidden weights for backward RNN, [numUnitsBW x numUnitsBW]
auto bBW = INPUT_VARIABLE(6); // biases for backward RNN, [2*v]
NDArray* h0FW = nullptr; // initial cell output for forward RNN (at time step = 0) [bS x numUnitsFW]
NDArray* h0BW = nullptr; // initial cell output for backward RNN (at time step = 0) [bS x numUnitsBW]
NDArray* maxTimeStep = nullptr; // vector [bS] containing integer values within [0,time), each element of this vector set max time step per each input in batch, this means there are no calculations for time >= maxTimeStep
const int timeMajor = block.getIArguments()->size() > 0 ? INT_ARG(0) : 0; // if non zero then [time, bS, ...], else [bS, time, ...]
switch(block.width()) {
case 8:
maxTimeStep = INPUT_VARIABLE(7);
break;
case 9:
h0FW = INPUT_VARIABLE(7);
h0BW = INPUT_VARIABLE(8);
break;
case 10:
h0FW = INPUT_VARIABLE(7);
h0BW = INPUT_VARIABLE(8);
maxTimeStep = INPUT_VARIABLE(9);
break;
}
auto hFW = OUTPUT_VARIABLE(0); // cell outputs for forward RNN [time x bS x numUnitsFW] or [bS x time x numUnitsFW], shape depends on timeMajor parameter
auto hBW = OUTPUT_VARIABLE(1); // cell outputs for backward RNN [time x bS x numUnitsBW] or [bS x time x numUnitsBW], shape depends on timeMajor parameter
auto hFWFinal = OUTPUT_VARIABLE(2); // final cell out for forward RNN [bS x numUnitsFW]
auto hBWFinal = OUTPUT_VARIABLE(3); // final cell out for backward RNN [bS x numUnitsBF]
REQUIRE_TRUE(x->rankOf() == 3, 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: input array must have rank = 3, but got %i instead !", x->rankOf());
REQUIRE_TRUE(WxFW->rankOf() == 2, 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: input-to-hidden weights array (for forward RNN) must have rank = 2, but got %i instead !", WxFW->rankOf());
REQUIRE_TRUE(WxBW->rankOf() == 2, 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: input-to-hidden weights array (for backward RNN) must have rank = 2, but got %i instead !", WxBW->rankOf());
const int inRank = x->rankOf();
const int time = timeMajor ? x->sizeAt(0) : x->sizeAt(1);
const int bS = timeMajor ? x->sizeAt(1) : x->sizeAt(0);
const int numUnitsFW = WxFW->sizeAt(1);
const int numUnitsBW = WxBW->sizeAt(1);
std::vector<Nd4jLong> expectedWhFWshape = {numUnitsFW, numUnitsFW};
std::vector<Nd4jLong> expectedWhBWshape = {numUnitsBW, numUnitsBW};
std::vector<Nd4jLong> expectedbFWshape = {2*numUnitsFW};
std::vector<Nd4jLong> expectedbBWshape = {2*numUnitsBW};
REQUIRE_TRUE(WhFW->isSameShape(expectedWhFWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of hidden-to-hidden weights array (for forward RNN), expected is %s but got %s instead !", ShapeUtils::shapeAsString(expectedWhFWshape).c_str(), ShapeUtils::shapeAsString(WhFW).c_str());
REQUIRE_TRUE(WhBW->isSameShape(expectedWhBWshape) , 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of hidden-to-hidden weights array (for backward RNN), expected is %s but got %s instead !", ShapeUtils::shapeAsString(expectedWhBWshape).c_str(), ShapeUtils::shapeAsString(WhBW).c_str());
REQUIRE_TRUE(bFW->isSameShape(expectedbFWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of biases array (for forward RNN), expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedbFWshape).c_str(), ShapeUtils::shapeAsString(bFW).c_str());
REQUIRE_TRUE(bBW->isSameShape(expectedbBWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of biases array (for backward RNN), expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedbBWshape).c_str(), ShapeUtils::shapeAsString(bBW).c_str());
if(h0FW) {
std::vector<Nd4jLong> expectedh0FWshape = {bS, numUnitsFW};
REQUIRE_TRUE(h0FW->isSameShape(expectedh0FWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of initial cell output array (for forward RNN), expected is %s but got %s instead !", ShapeUtils::shapeAsString(expectedh0FWshape).c_str(), ShapeUtils::shapeAsString(h0FW).c_str());
}
if(h0BW) {
std::vector<Nd4jLong> expectedh0BWshape = {bS, numUnitsBW};
REQUIRE_TRUE(h0BW->isSameShape(expectedh0BWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of initial cell output array (for backward RNN), expected is %s but got %s instead !", ShapeUtils::shapeAsString(expectedh0BWshape).c_str(), ShapeUtils::shapeAsString(h0BW).c_str());
}
if(maxTimeStep) {
std::vector<Nd4jLong> expectedmaxTimeStepshape = {bS};
REQUIRE_TRUE(maxTimeStep->isSameShape(expectedmaxTimeStepshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of maxTimeStep array, expected is [%i], but got %s instead !", bS, ShapeUtils::shapeAsString(maxTimeStep).c_str());
}
// forward steps
sd::ops::dynamic_rnn dynamicRnn;
auto resultsFW = dynamicRnn.evaluate({x, WxFW, WhFW, bFW, h0FW, maxTimeStep}, {timeMajor});
hFW->assign(resultsFW.at(0)); // [time x bS x numUnitsFW] or [bS x time x numUnitsFW]
hFWFinal->assign(resultsFW.at(1));
auto seqLen = maxTimeStep;
if(seqLen == nullptr) {
// FIXME: which datatype should be used here?
seqLen = new NDArray(x->ordering(), {bS}, sd::DataType::INT64, block.launchContext());
seqLen->assign(time); // set each element of seqLen to be equal to time
}
// reverse x
sd::ops::reverse_sequence reverse;
auto resultsIn = timeMajor ? reverse.evaluate({x, seqLen}, {0, 1}) : reverse.evaluate({x, seqLen}, {1, 0});
REQUIRE_TRUE (resultsIn.status() == ND4J_STATUS_OK, 0, "dynamic_bidirectional_rnn: there is a problem with reverse on the sequence.");
auto revInput = resultsIn.at(0);
// backward steps
auto resultsBW = dynamicRnn.evaluate({revInput, WxBW, WhBW, bBW, h0BW, maxTimeStep}, {timeMajor});
auto hBWtemp = resultsBW.at(0); // [time x bS x numUnitsBW] or [ bS x time xnumUnitsBW]
hBWFinal->assign(resultsBW.at(1));
// reverse hBWtemp
auto resultsOut = timeMajor ? reverse.evaluate({hBWtemp, seqLen}, {0, 1}) : reverse.evaluate({hBWtemp, seqLen}, {1, 0});
hBW->assign(resultsOut.at(0));
if(seqLen != maxTimeStep)
delete seqLen;
return Status::OK();
}
DECLARE_TYPES(dynamic_bidirectional_rnn) {
getOpDescriptor()
->setAllowedInputTypes(sd::DataType::ANY)
->setAllowedOutputTypes({ALL_FLOATS});
}
DECLARE_SHAPE_FN(dynamic_bidirectional_rnn) {
auto x = INPUT_VARIABLE(0); // input [time x bS x inSize] or [bS x time x inSize], shape depends on timeMajor parameter
auto WxFW = INPUT_VARIABLE(1); // input-to-hidden weights for forward RNN, [inSize x numUnitsFW]
auto WhFW = INPUT_VARIABLE(2); // hidden-to-hidden weights for forward RNN, [numUnitsFW x numUnitsFW]
auto bFW = INPUT_VARIABLE(3); // biases for forward RNN, [2*numUnitsFW]
auto WxBW = INPUT_VARIABLE(4); // input-to-hidden weights for backward RNN, [inSize x numUnitsBW]
auto WhBW = INPUT_VARIABLE(5); // hidden-to-hidden weights for backward RNN, [numUnitsBW x numUnitsBW]
auto bBW = INPUT_VARIABLE(6); // biases for backward RNN, [2*numUnitsBW]
NDArray* h0FW = nullptr; // initial cell output for forward RNN (at time step = 0) [bS x numUnitsFW]
NDArray* h0BW = nullptr; // initial cell output for backward RNN (at time step = 0) [bS x numUnitsBW]
NDArray* maxTimeStep = nullptr; // vector [bS] containing integer values within [0,time), each element of this vector set max time step per each input in batch, this means there are no calculations for time >= maxTimeStep
const int timeMajor = block.getIArguments()->size() > 0 ? INT_ARG(0) : 0; // if true then [time, bS, ...], else [bS, time, ...]
switch(block.width()) {
case 8:
maxTimeStep = INPUT_VARIABLE(7);
break;
case 9:
h0FW = INPUT_VARIABLE(7);
h0BW = INPUT_VARIABLE(8);
break;
case 10:
h0FW = INPUT_VARIABLE(7);
h0BW = INPUT_VARIABLE(8);
maxTimeStep = INPUT_VARIABLE(9);
break;
}
REQUIRE_TRUE(x->rankOf() == 3, 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: input array must have rank = 3, but got %i instead !", x->rankOf());
REQUIRE_TRUE(WxFW->rankOf() == 2, 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: input-to-hidden weights array (for forward RNN) must have rank = 2, but got %i instead !", WxFW->rankOf());
REQUIRE_TRUE(WxBW->rankOf() == 2, 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: input-to-hidden weights array (for backward RNN) must have rank = 2, but got %i instead !", WxBW->rankOf());
const int inRank = x->rankOf();
const int time = timeMajor ? x->sizeAt(0) : x->sizeAt(1);
const int bS = timeMajor ? x->sizeAt(1) : x->sizeAt(0);
const int numUnitsFW = WxFW->sizeAt(1);
const int numUnitsBW = WxBW->sizeAt(1);
std::vector<Nd4jLong> expectedWhFWshape = {numUnitsFW, numUnitsFW};
std::vector<Nd4jLong> expectedWhBWshape = {numUnitsBW, numUnitsBW};
std::vector<Nd4jLong> expectedbFWshape = {2*numUnitsFW};
std::vector<Nd4jLong> expectedbBWshape = {2*numUnitsBW};
REQUIRE_TRUE(WhFW->isSameShape(expectedWhFWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of hidden-to-hidden weights array (for forward RNN), expected is %s but got %s instead !", ShapeUtils::shapeAsString(expectedWhFWshape).c_str(), ShapeUtils::shapeAsString(WhFW).c_str());
REQUIRE_TRUE(WhBW->isSameShape(expectedWhBWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of hidden-to-hidden weights array (for backward RNN), expected is %s but got %s instead !", ShapeUtils::shapeAsString(expectedWhBWshape).c_str(), ShapeUtils::shapeAsString(WhBW).c_str());
REQUIRE_TRUE(bFW->isSameShape(expectedbFWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of biases array (for forward RNN), expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedbFWshape).c_str(), ShapeUtils::shapeAsString(bFW).c_str());
REQUIRE_TRUE(bBW->isSameShape(expectedbBWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of biases array (for backward RNN), expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedbBWshape).c_str(), ShapeUtils::shapeAsString(bBW).c_str());
if(h0FW) {
std::vector<Nd4jLong> expectedh0FWshape = {bS, numUnitsFW};
REQUIRE_TRUE(h0FW->isSameShape(expectedh0FWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of initial cell output array (for forward RNN), expected is %s but got %s instead !", ShapeUtils::shapeAsString(expectedh0FWshape).c_str(), ShapeUtils::shapeAsString(h0FW).c_str());
}
if(h0BW) {
std::vector<Nd4jLong> expectedh0BWshape = {bS, numUnitsBW};
REQUIRE_TRUE(h0BW->isSameShape(expectedh0BWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of initial cell output array (for backward RNN), expected is %s but got %s instead !", ShapeUtils::shapeAsString(expectedh0BWshape).c_str(), ShapeUtils::shapeAsString(h0BW).c_str());
}
if(maxTimeStep) {
std::vector<Nd4jLong> expectedmaxTimeStepshape = {bS};
REQUIRE_TRUE(maxTimeStep->isSameShape(expectedmaxTimeStepshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of maxTimeStep array, expected is [%i], but got %s instead !", bS, ShapeUtils::shapeAsString(maxTimeStep).c_str());
}
// evaluate output shapeInfos
Nd4jLong *hFWShapeInfo(nullptr), *hBWShapeInfo(nullptr), *hFWFinalPrevShapeInfo(nullptr), *hBWFinalPrevShapeInfo(nullptr);
ALLOCATE(hFWShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inRank), Nd4jLong);
ALLOCATE(hBWShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inRank), Nd4jLong);
ALLOCATE(hFWFinalPrevShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inRank-1), Nd4jLong);
ALLOCATE(hBWFinalPrevShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inRank-1), Nd4jLong);
hFWShapeInfo[0] = hBWShapeInfo[0] = inRank;
hFWShapeInfo[1] = hBWShapeInfo[1] = timeMajor ? time : bS;
hFWShapeInfo[2] = hBWShapeInfo[2] = timeMajor ? bS : time;
hFWShapeInfo[3] = numUnitsFW;
hBWShapeInfo[3] = numUnitsBW;
hFWFinalPrevShapeInfo[0] = hBWFinalPrevShapeInfo[0] = inRank-1;
hFWFinalPrevShapeInfo[1] = hBWFinalPrevShapeInfo[1] = bS;
hFWFinalPrevShapeInfo[2] = numUnitsFW;
hBWFinalPrevShapeInfo[2] = numUnitsBW;
ShapeUtils::updateStridesAndType(hFWShapeInfo, x->shapeInfo(), x->ordering());
ShapeUtils::updateStridesAndType(hBWShapeInfo, x->shapeInfo(), x->ordering());
ShapeUtils::updateStridesAndType(hFWFinalPrevShapeInfo, x->shapeInfo(), x->ordering());
ShapeUtils::updateStridesAndType(hBWFinalPrevShapeInfo, x->shapeInfo(), x->ordering());
return SHAPELIST(CONSTANT(hFWShapeInfo), CONSTANT(hBWShapeInfo), CONSTANT(hFWFinalPrevShapeInfo), CONSTANT(hBWFinalPrevShapeInfo));
}
}
}