raver119 320924278d
Legacy API changes (#441)
* initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* another initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* another initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* one more initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored buffer() and shapeInfo() methods usage with NDArray class.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt Graph class methods to use const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt choose op to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt where op shape method to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt lstsq op to use constant empty shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt matrix_diag_part op shape routine to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt determinant ops to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt mean_pairwssqerr_loss ops to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape methods for loss ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt log_loss op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape methods for ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt dilation2d ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted deconv2d ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted dynamicRNN op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for lstm layer ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few updates

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* first cuda tweak

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Adopt constant shapes for sconv2d ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt constant shapes for gru ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt constant shapes with shape methods for segment ops and so on.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted constant shapes with unsorted_segment_* ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted constant shapes with gamma op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods of reduce_stddev ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for reduce_* ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape method for squeeze op.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt strided_slice shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored concat op shape method to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape method for mirror_pad op.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted split op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted tile ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Added const cast for mkldnn routines handles.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored logSoftMaxForVector_ routine to conform with proper data and shape pointer casts.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Cosmetic changes to proper usage of constant pointers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored a couple shape comparators for strides and addBias helpers to proper use data pointers with inplace option.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored depthToSpace helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored histogram helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored im2col helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored gather and gatherND helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage on percentile helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed gather shape with helpers and range buffer usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with space to depth helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage and constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with LUP decomposition>

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored onehot_ helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pad and prefix to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactoed softmax helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed space to batch helpers to use buffers properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed stack and split helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with sparse to dense helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with mindistance_ helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with tile helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage with legacy pairwise bool ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored a couple of methods to adopt constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed broadcasting with constant shape."

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const usage with inplace reverse and constant shapes with legacy reduction.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored legacy ops with const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored sort to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected sort for constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage with special methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored Context to conform with constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* CUDA broadcasting headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* pairwise/indexreduce/random headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored native ops to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* legacy reduce3/scalar headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Corrected pullRow signature and tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected routines to proper use of constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored tests to use constant shapes properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored legacy ops tests to use constant shapes properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage with NDArray tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed native ops tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed special concat routine.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with test.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with a test.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored TAD.h and tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored calcStrides* routines to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed miscelaneous errors with constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* NativeOps const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Corrected definitions for declared functions.

Signed-off-by: shugeo <sgazeos@gmail.com>

* NativeOps const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed const shapes with shape routines.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed shape method for broadcastable case.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* xw_plus_b BP shape fn restored

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed signatures with broadcasting.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Repaired backprops shape methods for a set of operations.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored broadcast bool for cuda.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored methods for 3 args with const qualifier.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed a couple of kernel signatures for broadcasting.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels signatures for const buffers and shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise methods to persistent buffers and shapes usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt const to buffers and shapes with kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt const to buffers and shapes with scalar kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored indexreduce kernels signatures to use const buffers and shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise kernels to adopt cons shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise bool kernels to adopt cons shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored random special ops to conform with const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored native ops to conform with const shapes and buffers under cuda platform.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Cosmetical changes only.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes and buffers error.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected start pos routine.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored methods to conform with const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored helpers to use proper methods instead.

Signed-off-by: shugeo <sgazeos@gmail.com>

* bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed execScalar declaration.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed execScalar declaration.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected const shape cases with sort and so on.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes for sort.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored kernel declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected kernel declarations to adopt const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed segment helpers kernels declarations and so on to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shape usage with segment and solve helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernel declaration with adjustWeight helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed cuda implementations for constant shape helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted const shape usage with kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted top_k kernels to use const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected kernels declarations to adopt const shapes with helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored NDArray definitions to adopt const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes with image suppression helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Slight improvement with buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage with tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shape usage with definitions.

Signed-off-by: shugeo <sgazeos@gmail.com>

* minor updates on cpu side

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored const shape usage with ConstantDescritor and native ops with cuda platform.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored tear and tile kernels to adopt with const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* softmax_loop fix

Signed-off-by: raver119 <raver119@gmail.com>

* update missing signature

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* softmax again

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* few more missing consts

Signed-off-by: raver119 <raver119@gmail.com>

* new methods updated

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

Co-authored-by: shugeo <sgazeos@gmail.com>
2020-05-09 08:06:14 +03:00

484 lines
21 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template<typename T>
void pad_(const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, const NDArray& padValue) {
const T* x = input.bufferAsT<T>();
T* z = output.bufferAsT<T>();
const Nd4jLong* xShape = input.shapeOf();
const Nd4jLong* zShape = output.shapeOf();
const int rank = input.rankOf(); // both input and output have the same rank
const int rankMinusOne = rank - 1;
const auto zLen = output.lengthOf();
if(mode == 0) { // CONSTANT case
const T padVal = padValue.e<T>(0);
auto func = PRAGMA_THREADS_FOR {
int zCoords[MAX_RANK], xCoords[MAX_RANK];
for (auto i = start; i < stop; i++) {
shape::index2coordsCPU(start, i, output.shapeInfo(), zCoords);
const auto zOffset = shape::getOffset(output.shapeInfo(), zCoords);
memcpy(xCoords, zCoords, rank * sizeof(int));
bool within = true;
for (int j = rankMinusOne; j >= 0; --j) {
if (xShape[j] == zShape[j])
continue;
const auto left = paddings.e<Nd4jLong>(j, 0);
if (zCoords[j] < left || zCoords[j] >= left + xShape[j]) {
within = false;
break;
}
else
xCoords[j] = zCoords[j] - left;
}
if (within)
z[zOffset] = x[shape::getOffset(input.shapeInfo(), xCoords)];
else
z[zOffset] = padVal;
}
};
samediff::Threads::parallel_tad(func, 0, zLen);
}
else { // REFLECT and SYMMETRIC cases
const Nd4jLong shift1 = mode == 1 ? 0 : 1; // REFLECT : SYMMETRIC
const Nd4jLong shift2 = mode == 1 ? 2 : 1; // REFLECT : SYMMETRIC
auto func = PRAGMA_THREADS_FOR {
int zCoords[MAX_RANK], xCoords[MAX_RANK];
for (auto i = start; i < stop; i++) {
shape::index2coordsCPU(start, i, output.shapeInfo(), zCoords);
const auto zOffset = shape::getOffset(output.shapeInfo(), zCoords);
memcpy(xCoords, zCoords, rank * sizeof(int));
for (int j = rankMinusOne; j >= 0; --j) {
if (xShape[j] == zShape[j])
continue;
xCoords[j] = zCoords[j] - paddings.e<Nd4jLong>(j, 0); // are ready to fill middle (within input dimension range)
if (xCoords[j] < 0)
xCoords[j] = -xCoords[j] - shift1; // means fill from left
else if (xCoords[j] >= xShape[j])
xCoords[j] = 2 * xShape[j] - xCoords[j] - shift2; // means fill from right
}
const auto xOffset = shape::getOffset(input.shapeInfo(), xCoords);
z[zOffset] = x[xOffset];
}
};
samediff::Threads::parallel_tad(func, 0, zLen);
}
}
// //////////////////////////////////////////////////////////////////////////
// template<typename T>
// void pad2_(const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, NDArray const& padValue) {
// const int rank = output.rankOf();
// std::vector<int> dimsToExclude(rank);
// std::iota(dimsToExclude.begin(), dimsToExclude.end(), 0); // fill with 0, 1, ... rank-1
// Nd4jLong numLeft = paddings.e<Nd4jLong>(rank-1,0);
// Nd4jLong numRight = paddings.e<Nd4jLong>(rank-1,1);
// Nd4jLong inDimSize = input.sizeAt(rank-1);
// Nd4jLong outDimSize = output.sizeAt(rank-1);
// std::vector<std::vector<Nd4jLong>> outIdx = { std::vector<Nd4jLong>(2*rank), {numLeft, numLeft + inDimSize}, {0, numLeft}, {numLeft + inDimSize, outDimSize} };
// for(int i = 0; i < rank-1; ++i) {
// outIdx[0][2*i] = paddings.e<Nd4jLong>(i, 0);
// outIdx[0][2*i + 1] = outIdx[0][2*i] + input.sizeAt(i);
// }
// outIdx[0][2*rank-1] = outIdx[0][2*rank-2] = 0;
// // ***** populate innermost sub-arrays firstly ***** //
// dimsToExclude.pop_back();
// Nd4jLong startL = mode == 1 ? 1 : 0; // REFLECT or SYMMETRIC
// Nd4jLong startR = mode == 1 ? inDimSize-2 : inDimSize-1; // REFLECT or SYMMETRIC
// Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(input.shapeInfo(), dimsToExclude);
// NDArray outSubArr0 = output(outIdx[0], true);
// PRAGMA_OMP_PARALLEL_FOR
// for(Nd4jLong j = 0; j < numOfSubArrs; ++j) {
// NDArray outSubArr1 = outSubArr0(j, dimsToExclude);
// NDArray inSubArr = input(j, dimsToExclude);
// NDArray outSubArrMid = outSubArr1(outIdx[1]);
// outSubArrMid.assign(inSubArr); // assign middle
// if(mode == 0) { // CONSTANT
// if(numLeft != 0) {
// NDArray temp = outSubArr1(outIdx[2]);
// temp.assign(padValue); // assign left
// }
// if(numRight != 0) {
// NDArray temp = outSubArr1(outIdx[3]);
// temp.assign(padValue); // assign right
// }
// }
// else { // REFLECT or SYMMETRIC
// for(Nd4jLong k = numLeft-1, e = startL; k >= 0; --k, ++e) // fill left side
// outSubArr1.t<T>(k) = inSubArr.t<T>(e);
// for(Nd4jLong k = numLeft + inDimSize, e = startR; k < outDimSize; ++k, --e) // fill right side
// outSubArr1.t<T>(k) = inSubArr.t<T>(e);
// }
// }
// // ***** fill rest of outer sub-arrays ***** //
// std::vector<Nd4jLong> outIdxInner(2, 0);
// std::vector<Nd4jLong> outIdxOuter(2, 0);
// for(int i = rankBorder - 1; i >= 0; --i) {
// dimsToExclude.pop_back();
// outIdxInner.push_back(0), outIdxInner.push_back(0);
// outIdxOuter.push_back(0), outIdxOuter.push_back(0);
// Nd4jLong numLeft = paddings.e<Nd4jLong>(i, 0);
// Nd4jLong numRight = paddings.e<Nd4jLong>(i, 1);
// if(numLeft == 0 && numRight == 0)
// continue;
// Nd4jLong inDimSize = input.sizeAt(i);
// Nd4jLong outDimSize = output.sizeAt(i);
// if(mode == 0) {
// outIdxOuter[0] = 0; outIdxOuter[1] = numLeft;
// outIdxInner[0] = numLeft + inDimSize; outIdxInner[1] = outDimSize;
// }
// startL = mode == 1 ? numLeft + 1 : numLeft; // REFLECT or SYMMETRIC
// startR = mode == 1 ? numLeft + inDimSize - 2 : numLeft + inDimSize-1; // REFLECT or SYMMETRIC
// numOfSubArrs = ShapeUtils::getNumOfSubArrs(output.shapeInfo(), dimsToExclude);
// PRAGMA_OMP_PARALLEL_FOR_ARGS(firstprivate(outIdxOuter, outIdxInner))
// for(Nd4jLong j = 0; j < numOfSubArrs; ++j) {
// NDArray outSubArr = output(j, dimsToExclude);
// if(mode == 0) { // CONSTANT
// if(numLeft != 0) {
// NDArray tempO = outSubArr(outIdxOuter);
// tempO.assign(padValue); // assign left
// }
// if(numRight != 0) {
// NDArray tempI = outSubArr(outIdxInner);
// tempI.assign(padValue); // assign right
// }
// }
// else { // REFLECT or SYMMETRIC
// for(Nd4jLong k = numLeft-1, e = startL; k >= 0; --k, ++e) { // fill left side
// outIdxOuter[0] = k;
// outIdxOuter[1] = k+1;
// outIdxInner[0] = e;
// outIdxInner[1] = e+1;
// NDArray outSubArrInner = outSubArr(outIdxInner);
// NDArray outSubArrOuter = outSubArr(outIdxOuter);
// outSubArrOuter.assign(outSubArrInner);
// }
// for(Nd4jLong k = numLeft + inDimSize, e = startR; k < outDimSize; ++k, --e) { // fill right side
// outIdxOuter[0] = k;
// outIdxOuter[1] = k+1;
// outIdxInner[0] = e;
// outIdxInner[1] = e+1;
// NDArray outSubArrInner = outSubArr(outIdxInner);
// NDArray outSubArrOuter = outSubArr(outIdxOuter);
// outSubArrOuter.assign(outSubArrInner);
// }
// }
// }
// }
// }
void pad(sd::LaunchContext * context, const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, NDArray const& padValue) {
BUILD_SINGLE_SELECTOR(input.dataType(), pad_, (mode, input, paddings, output, padValue), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mirrorPad_(const NDArray& input, const NDArray& paddings, NDArray& output, const int mode) {
// mode: 0 - REFLECT, else - SYMMETRIC
const int reflBorder = (bool)mode ? 1 : 0;
const int rank = input.rankOf();
const Nd4jLong outLen = output.lengthOf();
if(rank <= 1) {
const Nd4jLong inLen = input.lengthOf();
const auto leftSide = paddings.e<Nd4jLong>(0);
const auto leftSideCorrected = leftSide - reflBorder;
const Nd4jLong len = 2*(inLen-1) + leftSide + reflBorder;
for(int i = 0; i < outLen; ++i) {
if (i < leftSide) // left side
output.p(i, input.e<T>(leftSideCorrected - i));
else if(i >= leftSide && i < leftSide + inLen) // middle
output.p(i, input.e<T>(i - leftSide));
else // right side
output.p(i, input.e<T>(len - i));
}
}
else {
auto func = PRAGMA_THREADS_FOR {
int inIdx[MAX_RANK], outIdx[MAX_RANK];
for (auto i = start; i < stop; i++) {
shape::index2coordsCPU(start, i, output.shapeInfo(), outIdx);
for (int j = 0; j < rank; ++j) {
const Nd4jLong inLen = input.sizeAt(j);
const auto leftSide = paddings.e<T>(j, 0);
const auto leftSideCorrected = leftSide - reflBorder;
const Nd4jLong len = 2 * (inLen - 1) + leftSide + reflBorder;
if (outIdx[j] < leftSide) // left side
inIdx[j] = leftSideCorrected - outIdx[j];
else if (outIdx[j] >= leftSide && outIdx[j] < leftSide + inLen) // middle
inIdx[j] = outIdx[j] - leftSide;
else // right side
inIdx[j] = len - outIdx[j];
}
auto outOffset = shape::getOffset(output.shapeInfo(), outIdx);
auto inOffset = shape::getOffset(input.shapeInfo(), inIdx);
reinterpret_cast<T *>(output.buffer())[outOffset] = reinterpret_cast<T const*>(input.buffer())[inOffset];
}
};
samediff::Threads::parallel_for(func, 0, outLen);
}
}
void mirrorPad(sd::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode) {
BUILD_SINGLE_SELECTOR(input.dataType(), mirrorPad_, (input, paddings, output, mode), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void mirrorPad_, (const NDArray& input, const NDArray& paddings, NDArray& output, const int mode), LIBND4J_TYPES);
////////////////////////////////////////////////////////////////////////
/*// initial values of inIdx, outIdx, dim must be equal to zero
template<typename T>
static void recursiveLoopForPad_(const int mode, NDArray& input, const NDArray& paddings, NDArray& output, std::vector<int> dimensions, int dim, int inIdx, int outIdx, NDArray& padValue ) {
int leftOffset;
// dimensions are array of input dimensions, it is sorted in increasing order
// every time at the beginning we erase first element from it (not good idea to use vector for this purpose, but luckily it is small enough)
// then we use this array for tads building, every time while recursion the number of built tads becomes bigger
dimensions.erase(dimensions.begin());
// build tad basing on output array, also create auxiliary arrays pointing on required output array ranges
shape::TAD tadOut(output.shapeInfo(), dimensions.data(), dimensions.size());
tadOut.createTadOnlyShapeInfo();
tadOut.createOffsets();
auto subArrOut = NDArray(output.getBuffer(), tadOut.tadOnlyShapeInfo, output.getContext());
auto subArr = NDArray(output.getBuffer(), tadOut.tadOnlyShapeInfo, output.getContext());
// build tad basing on input array, also create auxiliary array pointing on required input array range
shape::TAD tadIn(input.shapeInfo(), dimensions.data(), dimensions.size());
tadIn.createTadOnlyShapeInfo();
tadIn.createOffsets();
auto subArrIn = NDArray(input.getBuffer(), tadIn.tadOnlyShapeInfo, output.getContext());
// these indices take into account recursion and always point to actual tads numbers
if (input.rankOf() > 1 && output.rankOf() > 1) {// only for non-vector cases
outIdx = outIdx * output.sizeAt(dim + 1);
inIdx = inIdx * input.sizeAt(dim + 1);
}
// current input tad number, we add to it unity in a loop
int k = -1;
// loop through current dimension
for(int i = 0; i < output.sizeAt(dim); ++i) {
// corresponds to outer range (relevant indices are absent in input)
leftOffset = paddings.e<int>(dim, 0);
if(i < leftOffset || i >= (input.sizeAt(dim) + leftOffset))
continue;
// increase input tads number
++k;
// recursion condition allows for the fact that tad can't reduce to scalar
if(dim < input.rankOf() - 2)
recursiveLoopForPad(mode, input, paddings, output, dimensions, dim + 1, inIdx + k, outIdx + i, padValue);
else if (paddings.sizeAt(0) > dim + 1){
leftOffset = paddings.e<int>(dim + 1, 0);
// shift buffers pointers to actual element position
if (output.rankOf() > 1) {
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + i]);
subArrIn.setBuffer(reinterpret_cast<T*>(input.getBuffer()) + tadIn.tadOffsets[inIdx + i - paddings.e<int>(dim, 0)]);
}
else {
subArrOut.p(i, subArrIn.e<T>(i - leftOffset));
}
// most inner loop, corresponds to last dim = rank-1
switch (mode) {
case 0: // CONSTANT mode
for(int j = 0; j < subArrOut.lengthOf(); ++j)
if(j < leftOffset || j >= (subArrIn.lengthOf() + leftOffset) ) // firstly fill with zeros outer ranges
subArrOut.p(j, (T)0.f);
else
subArrOut.p(j, subArrIn.e<T>(j - leftOffset)); // fill middle with elements of input array
break;
case 1: // REFLECT mode
for(int j = 1; j <= leftOffset; ++j) // fill firstly left side
subArrOut.p(leftOffset - j, subArrIn.e<T>(j));
for(int j = 0; j < subArrIn.lengthOf(); ++j) // fill middle
subArrOut.p(leftOffset + j, subArrIn.e<T>(j));
for(int j = (subArrOut.lengthOf() - leftOffset); j < subArrOut.lengthOf(); ++j) // fill right side
subArrOut.p(j, subArrIn.e<T>(subArrOut.lengthOf() - j - 1));
break;
case 2: // SYMMETRIC mode
for(int j = 1; j <= leftOffset; ++j) // fill firstly left side
subArrOut.p(leftOffset - j, subArrIn.e<T>(j-1));
for(int j = 0; j < subArrIn.lengthOf(); ++j) // fill middle
subArrOut.p(leftOffset + j, subArrIn.e<T>(j));
for(int j = (subArrOut.lengthOf() - leftOffset); j < subArrOut.lengthOf(); ++j) // fill right side
subArrOut.p(j, subArrIn.e<T>(subArrOut.lengthOf() - j));
break;
}
}
else {
if (mode == 0 && input.rankOf() < 2)
subArrOut.p(i, subArrIn.e<T>(i - leftOffset)); // fill middle with elements of input array
}
}
// populate sub-array formed previously
leftOffset = paddings.e<int>(dim,0);
switch (mode) {
case 0: // CONSTANT mode
for(int j = 1; j <= leftOffset; ++j) {
// fill left side with padValue
if (output.rankOf() > 1) {
subArrOut.setBuffer(
reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset - j]);
subArrOut.assign(padValue);
}
else {
subArrOut.p(j - 1, padValue);
}
}
// output.printIndexedBuffer("Output at");
for(int j = (output.sizeAt(dim) - leftOffset); j < output.sizeAt(dim); ++j) { // fill left side with zeros
if (output.rankOf() > 1) {
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + j]);
subArrOut.assign(padValue);
}
else {
subArrOut.p(j, padValue);
}
}
break;
case 1: // REFLECT mode
for(int j = 1; j <= leftOffset; ++j) { // fill left side
subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset + j]);
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset - j]);
subArrOut.assign(&subArr);
}
for(int j = (output.sizeAt(dim) - leftOffset); j < output.sizeAt(dim); ++j) { // fill right side
subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + output.sizeAt(dim) + leftOffset - 1 - j]);
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + j]);
subArrOut.assign(&subArr);
}
break;
case 2: // SYMMETRIC mode
for(int j = 1; j <= leftOffset; ++j) { // fill left side
subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset + j - 1]);
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset - j]);
subArrOut.assign(&subArr);
}
for(int j = (output.sizeAt(dim) - leftOffset); j < output.sizeAt(dim); ++j) { // fill right side
subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + output.sizeAt(dim) + leftOffset - j]);
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + j]);
subArrOut.assign(&subArr);
}
break;
}
}
*/
/*
void recursiveLoopForPad(const int mode, NDArray& input, const NDArray& paddings, NDArray& output, std::vector<int> dimensions, int dim, int inIdx, int outIdx, NDArray& padValue ) {
BUILD_SINGLE_SELECTOR(input.dataType(), recursiveLoopForPad_, (mode, input, paddings, output, dimensions, dim, inIdx, outIdx, padValue), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void recursiveLoopForPad_, (const int mode, NDArray& input, const NDArray& paddings, NDArray& output, std::vector<int> dimensions, int dim, int inIdx, int outIdx, NDArray& padValue), LIBND4J_TYPES);
*/
}
}
}