cavis/libnd4j/include/ops/declarable/platform/mkldnn/batchnorm.cpp

166 lines
8.1 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author saudet
// @author raver119@gmail.com
//
#include <ops/declarable/PlatformHelper.h>
#include <ops/declarable/OpRegistrator.h>
#include <platform_boilerplate.h>
#include <helpers/MKLDNNStream.h>
#include "mkldnnUtils.h"
#include <ops/declarable/helpers/convolutions.h>
#include <NDArrayFactory.h>
using namespace mkldnn;
namespace nd4j {
namespace ops {
namespace platforms {
PLATFORM_IMPL(batchnorm_new) {
auto input = INPUT_VARIABLE(0);
auto mean = INPUT_VARIABLE(1);
auto variance = INPUT_VARIABLE(2);
NDArray *gamma = nullptr;
NDArray *beta = nullptr;
auto output = OUTPUT_VARIABLE(0);
const bool applyScale = (bool) INT_ARG(0);
const bool applyOffset = (bool) INT_ARG(1);
const double epsilon = T_ARG(0);
if (applyScale)
gamma = INPUT_VARIABLE(3);
if (applyOffset)
beta = INPUT_VARIABLE(3 + static_cast<int>(applyScale));
std::vector<int> axes;
if (block.numI() > 2)
for (int i = 2; i < block.numI(); ++i)
axes.push_back(INT_ARG(i));
else
axes.push_back(input->rankOf() - 1);
std::vector<Nd4jLong> shape({2, mean->lengthOf()});
NDArray weights = NDArrayFactory::create<float>('c', shape, block.launchContext());
weights({0, 1, 0, 0}).assign(1.0f);
weights({1, 2, 0, 0}).assign(0.0f);
mkldnn_memory_desc_t empty;
mkldnn::memory::desc batchnorm_src_md(empty), batchnorm_dst_md(empty), user_src_md(
empty), user_dst_md(empty);
auto norm_flag = normalization_flags::use_global_stats;
if (applyScale || applyOffset)
norm_flag |= normalization_flags::use_scale_shift;
mkldnnUtils::getMKLDNNMemoryDescBatchNorm(input, nullptr, output,
&batchnorm_src_md, nullptr, &batchnorm_dst_md,
&user_src_md, nullptr, &user_dst_md, axes[0]);
auto batchnorm_desc = batch_normalization_forward::desc(prop_kind::forward_inference, batchnorm_src_md, epsilon, norm_flag);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
mkldnn::stream stream(engine);
auto batchnorm_prim_desc = batch_normalization_forward::primitive_desc(batchnorm_desc, engine);
auto user_src_memory = mkldnn::memory(user_src_md, engine, input->buffer());
auto user_dst_memory = mkldnn::memory(user_dst_md, engine, output->buffer());
auto batchnorm_mean_memory = mkldnn::memory(batchnorm_prim_desc.mean_desc(), engine,
mean->buffer());
auto batchnorm_variance_memory = mkldnn::memory(batchnorm_prim_desc.variance_desc(), engine,
variance->buffer());
auto batchnorm_src_memory = user_src_memory;
mkldnn::memory m(batchnorm_src_md, engine);
if (m.get_desc() != user_src_memory.get_desc()) {
batchnorm_src_memory = mkldnn::memory(batchnorm_src_md, engine);
reorder(user_src_memory, batchnorm_src_memory).execute(stream, user_src_memory,
batchnorm_src_memory);
}
auto batchnorm_dst_memory = user_dst_memory;
if (batchnorm_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
batchnorm_dst_memory = mkldnn::memory(batchnorm_prim_desc.dst_desc(), engine);
}
if (applyScale || applyOffset) {
if (gamma != nullptr) {
weights({0, 1, 0, 0}).assign(gamma);
}
if (beta != nullptr) {
weights({1, 2, 0, 0}).assign(beta);
}
auto batchnorm_weights_memory = mkldnn::memory(batchnorm_prim_desc.weights_desc(), engine, weights.buffer());
batch_normalization_forward(batchnorm_prim_desc).execute(stream,
{{MKLDNN_ARG_SRC, batchnorm_src_memory},
{MKLDNN_ARG_MEAN, batchnorm_mean_memory},
{MKLDNN_ARG_VARIANCE, batchnorm_variance_memory},
{MKLDNN_ARG_WEIGHTS, batchnorm_weights_memory},
{MKLDNN_ARG_DST, batchnorm_dst_memory}});
} else {
batch_normalization_forward(batchnorm_prim_desc).execute(stream,
{{MKLDNN_ARG_SRC, batchnorm_src_memory},
{MKLDNN_ARG_MEAN, batchnorm_mean_memory},
{MKLDNN_ARG_VARIANCE, batchnorm_variance_memory},
{MKLDNN_ARG_DST, batchnorm_dst_memory}});
}
if (batchnorm_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
reorder(batchnorm_dst_memory, user_dst_memory).execute(stream, batchnorm_dst_memory,
user_dst_memory);
}
stream.wait();
return Status::OK();
}
PLATFORM_CHECK(batchnorm_new) {
// we don't want to use mkldnn if cpu doesn't support avx/avx2
if (::optimalLevel() < 2)
return false;
auto input = INPUT_VARIABLE(0);
auto mean = INPUT_VARIABLE(1);
auto variance = INPUT_VARIABLE(2);
NDArray *gamma = nullptr;
NDArray *beta = nullptr;
auto output = OUTPUT_VARIABLE(0);
const bool applyScale = (bool) INT_ARG(0);
const bool applyOffset = (bool) INT_ARG(1);
const double epsilon = T_ARG(0);
if (applyScale)
gamma = INPUT_VARIABLE(3);
if (applyOffset)
beta = INPUT_VARIABLE(3 + static_cast<int>(applyScale));
std::vector<int> axes;
if (block.numI() > 2)
for (int i = 2; i < block.numI(); ++i)
axes.push_back(INT_ARG(i));
else
axes.push_back(input->rankOf() - 1);
return block.isUseMKLDNN() &&
nd4j::MKLDNNStream::isSupported({input, mean, variance, gamma, beta, output}) &&
axes.size() == 1;
}
}
}
}