cavis/libnd4j/include/ops/declarable/generic/loss/cosineDistance.cpp

350 lines
16 KiB
C++

/* ******************************************************************************
*
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership.
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 22.11.2017
//
#include <system/op_boilerplate.h>
#if NOT_EXCLUDED(OP_cosine_distance_loss)
#include <ops/declarable/CustomOperations.h>
#include <helpers/ShapeUtils.h>
namespace sd {
namespace ops {
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(cosine_distance_loss, 3, 1, false, 0, 2) {
auto predictions = INPUT_VARIABLE(0);
auto weights = INPUT_VARIABLE(1);
auto labels = INPUT_VARIABLE(2);
auto output = OUTPUT_VARIABLE(0);
int reductionMode = INT_ARG(0); // 0 - "none"; 1 - "weighted_sum"; 2 - "weighted_mean"; 3 - "weighted_sum_by_nonzero_weights"
int dim = INT_ARG(1); // axis along which sum will be made
if(dim < 0)
dim += labels->rankOf();
// labels and predictions must have the same shapes
REQUIRE_TRUE(labels->isSameShape(predictions), 0, "COSINE_DISTANCE_LOSS OP: labels and predictions arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labels).c_str(), ShapeUtils::shapeAsString(predictions).c_str());
// regard 4 possible reduction modes below
REQUIRE_TRUE(reductionMode==0 || reductionMode==1 || reductionMode==2 || reductionMode==3, 0, "COSINE_DISTANCE_LOSS OP: reduction mode value is not acceptable, possible values are 0, 1, 2, 3, but got %i instead!", reductionMode);
// input dimension can't be larger than labels/predictions/weights rank
REQUIRE_TRUE(dim < labels->rankOf(), 0, "COSINE_DISTANCE_LOSS OP: input reduction dimension (got %i) must be < labels rank %i!", dim, labels->rankOf());
if(!output->isScalar()) {
// weights array can be single scalar or has the same shape as output, and must be broadcastable to output shape
REQUIRE_TRUE(weights->isScalar() || weights->rankOf() == output->rankOf(), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: weights array should be scalar or have the same rank as output array, but got %i and %i correspondingly!", weights->rankOf(), output->rankOf());
// check whether broadcast operation is possible for weights array
REQUIRE_TRUE(weights->isScalar() || ShapeUtils::areShapesBroadcastable(*weights, *output), 0, "COSINE_DISTANCE_LOSS OP: shapes of weights and output arrays should be broadcastable, but got weights = %s and output = %s instead!", ShapeUtils::shapeAsString(weights).c_str(), ShapeUtils::shapeAsString(labels).c_str());
}
NDArray E = 1. - (*predictions * *labels).reduceAlongDimension(reduce::Sum, {dim}, true);
// perform weights broadcasting/tile to E if it is necessary
auto weightsBroad = weights;
if(!weights->isScalar() && !weights->isSameShape(&E))
weightsBroad = new NDArray(weights->tileToShape(E.shapeInfo()));
// multiply E on weights
E *= (*weightsBroad);
switch (reductionMode) {
case 0: // 0 - "none", un-reduced weighted losses with the same shape as labels.
output->assign(&E);
break;
case 1: { // 1 - "weighted_sum", output is scalar and equal to sum of all elements of E array
output->assign(E.reduceNumber(reduce::Sum));
break;
}
case 2: { // 2 - "weighted_mean", output is scalar and equal to sum of all elements of E array divided by sum of all elements of weightsBroad array
NDArray sum;
if (weights->isScalar())
sum = *weights * E.lengthOf();
else
sum = weightsBroad->reduceNumber(reduce::Sum);
if (sum.e<double>(0) == 0.)
*output = 0.;
else
output->assign(E.reduceNumber(reduce::Sum) / sum);
break;
}
case 3: { // 3 - "weighted_sum_by_nonzero_weights", output is scalar and equal to scalar sum of all elements of E array divided by number of non-zero weights
Nd4jLong numOfNonZeroWeights = 0;
if(weights->isScalar()) {
if(weights->e<double>(0) != 0.)
numOfNonZeroWeights = E.lengthOf();
}
else
numOfNonZeroWeights = E.reduceNumber(reduce::CountNonZero).e<Nd4jLong>(0);
if (numOfNonZeroWeights == 0)
*output = 0.;
else
output->assign(E.reduceNumber(reduce::Sum) / double(numOfNonZeroWeights));
break;
}
}
STORE_RESULT(*output);
if(weightsBroad != weights)
delete weightsBroad;
return Status::OK();
}
//////////////////////////////////////////////////////////////////////////
DECLARE_TYPES(cosine_distance_loss) {
getOpDescriptor()->setAllowedInputTypes(sd::DataType::ANY)->setAllowedOutputTypes({ALL_FLOATS});
}
//////////////////////////////////////////////////////////////////////////
DECLARE_SHAPE_FN(cosine_distance_loss) {
// labels and predictions must have the same shapes
auto predictionsShapeInfo = inputShape->at(0);
auto weightsShapeInfo = inputShape->at(1);
auto labelsShapeInfo = inputShape->at(2);
int dim = INT_ARG(1);
if(dim < 0)
dim += labelsShapeInfo[0];
// labels and predictions must have the same shapes
REQUIRE_TRUE(shape::shapeEquals(labelsShapeInfo, predictionsShapeInfo), 0, "COSINE_DISTANCE_LOSS OP: labels and predictions arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(predictionsShapeInfo).c_str());
// input dimension can't be larger than labels/predictions/weights rank
REQUIRE_TRUE(dim < labelsShapeInfo[0], 0, "COSINE_DISTANCE_LOSS OP: input reduction dimension (got %i) must be < labels rank %i!", dim, labelsShapeInfo[0]);
DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(predictionsShapeInfo));
// evaluate output shapeInfo
Nd4jLong const* outShapeInfo = nullptr;
if(INT_ARG(0) != 0) // in this case output is scalar
outShapeInfo = ConstantShapeHelper::getInstance().scalarShapeInfo(outType);
else { // in this case output has the same shape as labels reduced by dim axis
std::vector<int> dimensions = {dim};
outShapeInfo = ShapeUtils::evalReduceShapeInfo(shape::order(predictionsShapeInfo), dimensions, predictionsShapeInfo, outType, true, false, block.getWorkspace());
// weights array can be single scalar or has the same rank as output, and must be broadcastable to output
REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || shape::rank(weightsShapeInfo) == shape::rank(outShapeInfo), 0, "COSINE_DISTANCE_LOSS OP: weights array should be scalar or have the same rank as output array, but got %i and %i correspondingly!", shape::rank(weightsShapeInfo), shape::rank(outShapeInfo));
// check whether broadcast operation is possible for weights array
REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || ShapeUtils::areShapesBroadcastable(weightsShapeInfo, outShapeInfo), 0, "COSINE_DISTANCE_LOSS OP: shapes of weights and output arrays should be broadcastable, but got weights = %s and output = %s instead!", ShapeUtils::shapeAsString(weightsShapeInfo).c_str(), ShapeUtils::shapeAsString(outShapeInfo).c_str());
}
return SHAPELIST(outShapeInfo);
}
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(cosine_distance_loss_grad, 3, 3, false, 0, 2) {
auto predictions = INPUT_VARIABLE(0);
auto weights = INPUT_VARIABLE(1);
auto labels = INPUT_VARIABLE(2);
auto dLdp = OUTPUT_VARIABLE(0); // dL/dpredictions
auto dLdw = OUTPUT_VARIABLE(1); // dL/dweights
auto dLdl = OUTPUT_VARIABLE(2); // dL/dlabels
int reductionMode = INT_ARG(0); // 0 - "none"; 1 - "weighted_sum"; 2 - "weighted_mean"; 3 - "weighted_sum_by_nonzero_weights"
// take into account Alex's proposition to treat "none" the same as "weighted_sum" mode when calculating gradients
if(reductionMode == 0)
reductionMode = 1;
int dim = INT_ARG(1); // axis along which sum will be made
if(dim < 0)
dim += labels->rankOf();
std::vector<int> dimensions = {dim};
// input validation
REQUIRE_TRUE(labels->isSameShape(predictions), 0, "COSINE_DISTANCE_LOSS_GRAD OP: labels and predictions arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labels).c_str(), ShapeUtils::shapeAsString(predictions).c_str());
// only 4 possible reduction modes exist
REQUIRE_TRUE(reductionMode==0 || reductionMode==1 || reductionMode==2 || reductionMode==3, 0, "COSINE_DISTANCE_LOSS_GRAD OP: reduction mode value is not acceptable, possible values are 0, 1, 2, 3, but got %i instead!", reductionMode);
auto lossShapeInfo = ShapeUtils::evalReduceShapeInfo(predictions->ordering(), dimensions, predictions->shapeInfo(), true, false, block.getWorkspace());
// weights array can be single scalar or has the same shape as loss, and must be broadcastable to loss shape
REQUIRE_TRUE(weights->isScalar() || weights->rankOf() == shape::rank(lossShapeInfo), 0, "COSINE_DISTANCE_LOSS_GRAD OP: weights array should be scalar or have the same rank as loss array, but got %i and %i correspondingly!", weights->rankOf(), shape::rank(lossShapeInfo));
// check whether broadcast operation is possible for weights array
REQUIRE_TRUE(weights->isScalar() || ShapeUtils::areShapesBroadcastable(weights->shapeInfo(), lossShapeInfo), 0, "COSINE_DISTANCE_LOSS_GRAD OP: shapes of weights and loss arrays should be broadcastable, but got weights = %s and loss = %s instead!", ShapeUtils::shapeAsString(weights).c_str(), ShapeUtils::shapeAsString(lossShapeInfo).c_str());
// input dimension can't be larger than labels/predictions/weights rank
REQUIRE_TRUE(dim < labels->rankOf(), 0, "COSINE_DISTANCE_LOSS_GRAD OP: input reduction dimension (got %i) must be < labels rank %i!", dim, labels->rankOf());
NDArray E = 1. - (*predictions * *labels).reduceAlongDimension(reduce::Sum, {dim}, true);
// perform weights broadcasting/tile to E if it is necessary
auto weightsBroad = weights;
if(!weights->isScalar() && !weights->isSameShape(&E))
weightsBroad = new NDArray(weights->tileToShape(E.shapeInfo()));
dLdp->assign(-*labels);
dLdl->assign(-*predictions);
switch (reductionMode) {
case 1: { // 1 - "none" and "weighted_sum", output is scalar and equal to sum of all elements of E array
*dLdp *= *weightsBroad;
*dLdl *= *weightsBroad;
if(weights->isScalar() || weights->lengthOf() == 1) {
dLdw->assign(E.reduceNumber(reduce::Sum));
}
else {
if(weights != weightsBroad) {
std::vector<int> axesToReduceAlong = ShapeUtils::evalBroadcastBackwardAxis(weights->shapeInfo(), weightsBroad->shapeInfo());
E.reduceAlongDimension(reduce::Sum, *dLdw, axesToReduceAlong, true);
}
else
dLdw->assign(E);
}
break;
}
case 2: { // 2 - "weighted_mean", output is scalar and equal to sum of all elements of E array divided by sum of all elements of weightsBroad array
NDArray sum;
if (weights->isScalar())
sum = (*weights) * E.lengthOf();
else
sum = weightsBroad->reduceNumber(reduce::Sum);
if (sum.e<double>(0) == 0.) {
*dLdp = 0.;
*dLdl = 0.;
*dLdw = 0.;
}
else {
NDArray temp = *weightsBroad / sum;
*dLdp *= temp;
*dLdl *= temp;
if(weights->isScalar() || weights->lengthOf() == 1) {
*dLdw = 0.;
}
else {
if(weights != weightsBroad) {
std::vector<int> axesToReduceAlong = ShapeUtils::evalBroadcastBackwardAxis(weights->shapeInfo(), weightsBroad->shapeInfo());
((E * sum - (E * *weightsBroad).reduceNumber(reduce::Sum)) / (sum*sum)).reduceAlongDimension(reduce::Sum, *dLdw, axesToReduceAlong, true);
}
else
dLdw->assign((E * sum - (E * *weightsBroad).reduceNumber(reduce::Sum)) / (sum*sum));
}
}
break;
}
case 3: { // 3 - "weighted_sum_by_nonzero_weights", output is scalar and equal to scalar sum of all elements of E array divided by number of non-zero weights
Nd4jLong numOfNonZeroWeights = 0;
if(weights->isScalar()) {
if(weights->e<double>(0) != 0.)
numOfNonZeroWeights = E.lengthOf();
}
else
numOfNonZeroWeights = weightsBroad->reduceNumber(reduce::CountNonZero).e<Nd4jLong>(0);
if (numOfNonZeroWeights == 0) {
*dLdp = 0.;
*dLdl = 0.;
*dLdw = 0.;
}
else {
NDArray temp = *weightsBroad / numOfNonZeroWeights;
*dLdp *= temp;
*dLdl *= temp;
if(weights->isScalar() || weights->lengthOf() == 1) {
dLdw->assign(E.reduceNumber(reduce::Sum) / numOfNonZeroWeights);
}
else {
if(weights != weightsBroad) {
std::vector<int> axesToReduceAlong = ShapeUtils::evalBroadcastBackwardAxis(weights->shapeInfo(), weightsBroad->shapeInfo());
E.reduceAlongDimension(reduce::Sum, *dLdw, axesToReduceAlong, true);
*dLdw /= numOfNonZeroWeights;
}
else
dLdw->assign(E / numOfNonZeroWeights);
}
}
break;
}
}
if(weightsBroad != weights)
delete weightsBroad;
return Status::OK();
}
//////////////////////////////////////////////////////////////////////////
DECLARE_TYPES(cosine_distance_loss_grad) {
getOpDescriptor()->setAllowedInputTypes(sd::DataType::ANY)->setAllowedOutputTypes({ALL_FLOATS});
}
//////////////////////////////////////////////////////////////////////////
DECLARE_SHAPE_FN(cosine_distance_loss_grad) {
/// labels and predictions must have the same shapes
auto predictionsShapeInfo = inputShape->at(0);
auto weightsShapeInfo = inputShape->at(1);
auto labelsShapeInfo = inputShape->at(2);
int dim = INT_ARG(1);
if(dim < 0)
dim += labelsShapeInfo[0];
std::vector<int> dimensions = {dim};
// labels and predictions must have the same shapes
REQUIRE_TRUE(shape::shapeEquals(labelsShapeInfo, predictionsShapeInfo), 0, "COSINE_DISTANCE_LOSS_GRAD OP: labels and predictions arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(predictionsShapeInfo).c_str());
auto lossShapeInfo = ShapeUtils::evalReduceShapeInfo(shape::order(predictionsShapeInfo), dimensions, predictionsShapeInfo, true, false, block.getWorkspace());
// weights array can be single scalar or has the same rank as loss, and must be broadcastable to loss
REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || shape::rank(weightsShapeInfo) == shape::rank(lossShapeInfo), 0, "COSINE_DISTANCE_LOSS_GRAD OP: weights array should be scalar or have the same rank as loss array, but got %i and %i correspondingly!", shape::rank(weightsShapeInfo), shape::rank(lossShapeInfo));
// check whether broadcast operation is possible for weights array
REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || ShapeUtils::areShapesBroadcastable(weightsShapeInfo, lossShapeInfo), 0, "COSINE_DISTANCE_LOSS_GRAD OP: shapes of weights and loss arrays should be broadcastable, but got weights = %s and loss = %s instead!", ShapeUtils::shapeAsString(weightsShapeInfo).c_str(), ShapeUtils::shapeAsString(lossShapeInfo).c_str());
// input dimension can't be larger than labels/predictions/weights rank
REQUIRE_TRUE(dim < labelsShapeInfo[0], 0, "COSINE_DISTANCE_LOSS_GRAD OP: input reduction dimension (got %i) must be < labels rank %i!", dim, labelsShapeInfo[0]);
auto outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(predictionsShapeInfo));
auto dLdpShapeInfo = ShapeBuilders::copyShapeInfoAndType(predictionsShapeInfo, outType, false, block.getWorkspace());
auto dLdwShapeInfo = ShapeBuilders::copyShapeInfoAndType(weightsShapeInfo, outType, false, block.getWorkspace());
auto dLdlShapeInfo = ShapeBuilders::copyShapeInfoAndType(labelsShapeInfo, outType, false, block.getWorkspace());
return SHAPELIST(CONSTANT(dLdpShapeInfo), CONSTANT(dLdwShapeInfo), CONSTANT(dLdlShapeInfo));
}
}
}
#endif