cavis/libnd4j/include/loops/cpu/summarystatsreduce.cpp
Alex Black 68ea5f3688
Dev branch merge: dev_20190606 (#7904)
* correct logsoftmax looss (#2)

* Small SameDiff listener fix (#4)

* Various fixes (#6)

* #7839 Fix for asXMatrix and tests

* #7866 EmbeddingSequenceLayer dtype fix + test

* #7856 SameDiff save/load stream methods

* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration

* EvaluationBinary 3d/4d

* More evaluation 3d/4d tests

* #7847 Evaluation empty checks

* Small test ifx

* #7848 Fix median edge case

* Improve DL4J samediff layer tests

* [WIP] FastText wrapper implemented (#8)

* FastText implemented

* Some fixes

* Fix shapes for wordsNearest

* Validation of input vectors

* Fixes

* Fixed test

* Thread tagged

* Some tweaks

* setContextClassLoader for DeallocatorServiceThread

* Numpy format tests (#1)

* Various fixes (#11)

* #7852 SameDiff gather fix

* #7892 SameDiff placeholder to constant conversion

* #7890 validate input rank for MLN/CG init methods

* Fix broken permute shape calculation

* Permute and gather fixes

* Tests

* #7850 LogSumExp fix + test

* Handful of test fixes

* Empty arrays with non-scalar shapes (#10)

* minor rearrangements for lambdas

* empty tensors with non-scalar shapes

* numpy empty tensors with non-scalar shapes

* few more empty tweaks

* Small fixes

* conv3d signature update

* micro fix in batchnorm mkldnn

* Import fixes

* Fix

* MKL-DNN update

* Small fill fix

* fill with empty input + test

* Fixes

* Small error improvement

* Fix

* one special test

* couple of fixes for lstm

* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone

* Fixes

* FP16

* Unsigned

* BFloat16

* Fill op - empty tweaks

* - couple of fixes for empty arrays construction
- stack updated

* strided slice fix

* one transform test

* provide method for reducing shapeInfo in case of input array is empty

* Fixed reduceAlongDimensions to use empty input properly.

* couple of broadcast tests

* couple of tests broadcast tests + tweak to make them pass

* add check of non-empty to methods producing sub-arrays

* Fixed reshapeC with zeros in shape.

* complete empty check in reduce_... legacy ops

* Concat and cumsum/prod

* Tweak to empty shape inference on import

* add empty check to the rest of reduce legacy ops

* one more test

* correct typo in evalReduceShapeInfoEmpty

* Added tests for reduce_* ops to tests with zero shapes.

* few more tests for empty reductions

* Fixed strided_slice op with empty case and tests.

* one more empty reduction test

* Fixed strided_slice test.

* add empty check to NDArray::reshapei

* infOrMax

* empty min/max with infinity tests

* made unstack working correctly with empty arrays

* few IndexReduce tests + tweaks for empty shapes

* add test for empty concat

* few tests fixed

* Validation fix for reductions on empty shapes

* Reverse fix

* Reduction shape calc fixes

* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs

* Range fix

* - NDArray constructor updated for scalars/empty arrays
- few tests fixed

* More fixes

* Empty creator fixes

* concat fix

* concat fix

* TF import tests: allow 'both all NaN' and 'both all inf' to pass

* Slice, zero fraction, and reshape fixes

* transpose, gather

* Zero fraction

* scalar cast fix

* Empty reduction axis support

* few more tests fixed

* Fixed input checks conforming with TF for concat op and tests.

* few tests fixed

* matmul scalar shape fix

* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.

* broadcast bool fix

* few more tests

* few more tests

* correct evalReduceShapeInfoEmpty

* argmax/argmin + tests

* one more empty edge case + one more test

* argmax/argmin/realdiv_bp tweaks

* empty reshape test + fix

* Helper fixes

* Small fixes

* Gather test fix

* Gather test fix

* Small fixes

* reduce scalar zero values

* scalar mean workaround

* Remove debug code

* along dim mean workaround

* one more test

* - equalsTo() tweak for empty arrays
- one more test

* broadcast tweaks
2019-06-15 21:34:34 +10:00

194 lines
7.9 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// Created by raver119 on 18.12.17.
//
#include <types/types.h>
#include <op_boilerplate.h>
#include <loops/summarystatsreduce.h>
#include <helpers/shape.h>
#include <helpers/TAD.h>
#include <helpers/ConstantTadHelper.h>
using namespace simdOps;
namespace functions {
namespace summarystats {
template <typename X, typename Y>
Y SummaryStatsReduce<X,Y>::execScalar(const int opNum,
const bool biasCorrected,
void *x,
Nd4jLong *xShapeInfo,
void *extraParams) {
RETURNING_DISPATCH_BY_OPNUM_TT(execScalar, PARAMS(biasCorrected, x, xShapeInfo, extraParams), SUMMARY_STATS_OPS);
}
template <typename X, typename Y>
void SummaryStatsReduce<X,Y>::execScalar(const int opNum,
const bool biasCorrected,
void *x,
Nd4jLong *xShapeInfo,
void *extraParams,
void *z,
Nd4jLong *zShapeInfo) {
DISPATCH_BY_OPNUM_TT(execScalar, PARAMS(biasCorrected, x, xShapeInfo, extraParams, z, zShapeInfo), SUMMARY_STATS_OPS);
}
template <typename X, typename Y>
void SummaryStatsReduce<X,Y>::exec(const int opNum,
const bool biasCorrected,
void *x,
Nd4jLong *xShapeInfo,
void *extraParams,
void *z,
Nd4jLong *zShapeInfo,
int *dimension,
int dimensionLength) {
DISPATCH_BY_OPNUM_TT(exec, PARAMS(biasCorrected, x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength), SUMMARY_STATS_OPS);
}
template <typename X, typename Z>
template <typename OpType >
void SummaryStatsReduce<X,Z>::execScalar(const bool biasCorrected,
void *vx,
Nd4jLong *xShapeInfo,
void *vextraParams,
void *vz,
Nd4jLong *zShapeInfo) {
auto z = reinterpret_cast<Z*>(vz);
z[0] = execScalar<OpType>(biasCorrected, vx, xShapeInfo, vextraParams);
}
template <typename X, typename Z>
template <typename OpType >
Z SummaryStatsReduce<X,Z>::execScalar(const bool biasCorrected, void *vx, Nd4jLong *xShapeInfo, void *vextraParams) {
auto x = reinterpret_cast<X *>(vx);
auto extraParams = reinterpret_cast<Z *>(vextraParams);
SummaryStatsData<X> startingIndex;
startingIndex.initialize();
auto length = shape::length(xShapeInfo);
uint xShapeInfoCast[MAX_RANK];
const bool canCast = nd4j::DataTypeUtils::castShapeInfo<uint>(xShapeInfo, xShapeInfoCast);
for (Nd4jLong i = 0; i < length; i++) {
auto xOffset = shape::indexOffset(i, xShapeInfo, xShapeInfoCast, length, canCast);
SummaryStatsData<X> curr;
curr.initWithValue(x[xOffset]);
startingIndex = update(startingIndex, curr, extraParams);
}
return OpType::getValue(biasCorrected, startingIndex);
}
template <typename X, typename Z>
template <typename OpType >
void SummaryStatsReduce<X,Z>::exec(const bool biasCorrected,
void *vx,
Nd4jLong *xShapeInfo,
void *vextraParams,
void *vz,
Nd4jLong *zShapeInfo,
int *dimension,
int dimensionLength) {
auto x = reinterpret_cast<X *>(vx);
auto z = reinterpret_cast<Z *>(vz);
auto extraParams = reinterpret_cast<Z *>(vextraParams);
int resultLength = shape::length(zShapeInfo);
if(nd4j::ArrayOptions::arrayType(xShapeInfo) == nd4j::ArrayType::EMPTY) {
if(nd4j::ArrayOptions::arrayType(zShapeInfo) == nd4j::ArrayType::EMPTY)
return;
SummaryStatsData<X> comp;
comp.initWithValue(x[0]);
PRAGMA_OMP_PARALLEL_FOR_IF(resultLength > nd4j::Environment::getInstance()->elementwiseThreshold())
for (uint i = 0; i < resultLength; i++)
z[i] = OpType::getValue(biasCorrected, comp);
return;
}
if (shape::isScalar(zShapeInfo)) {
z[0] = execScalar<OpType>(biasCorrected, x, xShapeInfo, extraParams);
return;
}
//no-op
if (dimensionLength < 1)
return;
auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(xShapeInfo, dimension, dimensionLength);
//pre squeezed: this is for keeping the pointer to the original
//shape information for tad offset
//the squeezed information doesn't render the right strides for
//tad offset
if (resultLength == 1 || dimensionLength == shape::rank(xShapeInfo) || tadPack.numberOfTads() == 1) {
z[0] = execScalar<OpType>(biasCorrected, x, xShapeInfo, extraParams);
return;
}
auto tadShapeShapeInfo = tadPack.primaryShapeInfo();
auto tadLength = shape::length(tadPack.primaryShapeInfo());
auto tadEWS = shape::elementWiseStride(tadPack.primaryShapeInfo());
auto tadOrder = shape::order(tadPack.primaryShapeInfo());
uint tadShapeShapeInfoCast[MAX_RANK];
const bool canCast = tadEWS == 1 && tadOrder == 'c' ? false : nd4j::DataTypeUtils::castShapeInfo<uint>(tadShapeShapeInfo, tadShapeShapeInfoCast);
PRAGMA_OMP_PARALLEL_FOR
for (int r = 0; r < resultLength; r++) {
auto tadOffsetForBlock = tadPack.primaryOffsets()[r];
auto tx = x + tadOffsetForBlock;
SummaryStatsData<X> comp;
comp.initWithValue(tx[0]);
if (tadEWS == 1 && tadOrder == 'c') {
for (int i = 1; i < tadLength; i ++) {
SummaryStatsData <X> indexVal2;
indexVal2.initWithValue(tx[i]);
comp = update(comp, OpType::op(indexVal2, extraParams), extraParams);
}
}
else {
for (int i = 1; i < tadLength; i ++) {
auto xOffset = shape::indexOffset(i, tadShapeShapeInfo, tadShapeShapeInfoCast, tadLength, canCast);
SummaryStatsData <X> indexVal2;
indexVal2.initWithValue(tx[xOffset]);
comp = update(comp, OpType::op(indexVal2, extraParams), extraParams);
}
}
z[r] = OpType::getValue(biasCorrected, comp);
}
}
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT SummaryStatsReduce, , LIBND4J_TYPES, FLOAT_TYPES);
}
}