* correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
194 lines
7.9 KiB
C++
194 lines
7.9 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// Created by raver119 on 18.12.17.
|
|
//
|
|
|
|
#include <types/types.h>
|
|
#include <op_boilerplate.h>
|
|
#include <loops/summarystatsreduce.h>
|
|
#include <helpers/shape.h>
|
|
#include <helpers/TAD.h>
|
|
#include <helpers/ConstantTadHelper.h>
|
|
|
|
using namespace simdOps;
|
|
|
|
namespace functions {
|
|
namespace summarystats {
|
|
|
|
|
|
template <typename X, typename Y>
|
|
Y SummaryStatsReduce<X,Y>::execScalar(const int opNum,
|
|
const bool biasCorrected,
|
|
void *x,
|
|
Nd4jLong *xShapeInfo,
|
|
void *extraParams) {
|
|
RETURNING_DISPATCH_BY_OPNUM_TT(execScalar, PARAMS(biasCorrected, x, xShapeInfo, extraParams), SUMMARY_STATS_OPS);
|
|
}
|
|
|
|
template <typename X, typename Y>
|
|
void SummaryStatsReduce<X,Y>::execScalar(const int opNum,
|
|
const bool biasCorrected,
|
|
void *x,
|
|
Nd4jLong *xShapeInfo,
|
|
void *extraParams,
|
|
void *z,
|
|
Nd4jLong *zShapeInfo) {
|
|
DISPATCH_BY_OPNUM_TT(execScalar, PARAMS(biasCorrected, x, xShapeInfo, extraParams, z, zShapeInfo), SUMMARY_STATS_OPS);
|
|
}
|
|
|
|
template <typename X, typename Y>
|
|
void SummaryStatsReduce<X,Y>::exec(const int opNum,
|
|
const bool biasCorrected,
|
|
void *x,
|
|
Nd4jLong *xShapeInfo,
|
|
void *extraParams,
|
|
void *z,
|
|
Nd4jLong *zShapeInfo,
|
|
int *dimension,
|
|
int dimensionLength) {
|
|
DISPATCH_BY_OPNUM_TT(exec, PARAMS(biasCorrected, x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength), SUMMARY_STATS_OPS);
|
|
}
|
|
|
|
template <typename X, typename Z>
|
|
template <typename OpType >
|
|
void SummaryStatsReduce<X,Z>::execScalar(const bool biasCorrected,
|
|
void *vx,
|
|
Nd4jLong *xShapeInfo,
|
|
void *vextraParams,
|
|
void *vz,
|
|
Nd4jLong *zShapeInfo) {
|
|
auto z = reinterpret_cast<Z*>(vz);
|
|
z[0] = execScalar<OpType>(biasCorrected, vx, xShapeInfo, vextraParams);
|
|
}
|
|
|
|
template <typename X, typename Z>
|
|
template <typename OpType >
|
|
Z SummaryStatsReduce<X,Z>::execScalar(const bool biasCorrected, void *vx, Nd4jLong *xShapeInfo, void *vextraParams) {
|
|
|
|
auto x = reinterpret_cast<X *>(vx);
|
|
auto extraParams = reinterpret_cast<Z *>(vextraParams);
|
|
|
|
SummaryStatsData<X> startingIndex;
|
|
startingIndex.initialize();
|
|
auto length = shape::length(xShapeInfo);
|
|
|
|
uint xShapeInfoCast[MAX_RANK];
|
|
const bool canCast = nd4j::DataTypeUtils::castShapeInfo<uint>(xShapeInfo, xShapeInfoCast);
|
|
|
|
for (Nd4jLong i = 0; i < length; i++) {
|
|
|
|
auto xOffset = shape::indexOffset(i, xShapeInfo, xShapeInfoCast, length, canCast);
|
|
|
|
SummaryStatsData<X> curr;
|
|
curr.initWithValue(x[xOffset]);
|
|
startingIndex = update(startingIndex, curr, extraParams);
|
|
}
|
|
|
|
return OpType::getValue(biasCorrected, startingIndex);
|
|
}
|
|
|
|
template <typename X, typename Z>
|
|
template <typename OpType >
|
|
void SummaryStatsReduce<X,Z>::exec(const bool biasCorrected,
|
|
void *vx,
|
|
Nd4jLong *xShapeInfo,
|
|
void *vextraParams,
|
|
void *vz,
|
|
Nd4jLong *zShapeInfo,
|
|
int *dimension,
|
|
int dimensionLength) {
|
|
|
|
auto x = reinterpret_cast<X *>(vx);
|
|
auto z = reinterpret_cast<Z *>(vz);
|
|
auto extraParams = reinterpret_cast<Z *>(vextraParams);
|
|
int resultLength = shape::length(zShapeInfo);
|
|
|
|
if(nd4j::ArrayOptions::arrayType(xShapeInfo) == nd4j::ArrayType::EMPTY) {
|
|
if(nd4j::ArrayOptions::arrayType(zShapeInfo) == nd4j::ArrayType::EMPTY)
|
|
return;
|
|
SummaryStatsData<X> comp;
|
|
comp.initWithValue(x[0]);
|
|
PRAGMA_OMP_PARALLEL_FOR_IF(resultLength > nd4j::Environment::getInstance()->elementwiseThreshold())
|
|
for (uint i = 0; i < resultLength; i++)
|
|
z[i] = OpType::getValue(biasCorrected, comp);
|
|
return;
|
|
}
|
|
|
|
if (shape::isScalar(zShapeInfo)) {
|
|
z[0] = execScalar<OpType>(biasCorrected, x, xShapeInfo, extraParams);
|
|
return;
|
|
}
|
|
|
|
//no-op
|
|
if (dimensionLength < 1)
|
|
return;
|
|
|
|
auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(xShapeInfo, dimension, dimensionLength);
|
|
|
|
//pre squeezed: this is for keeping the pointer to the original
|
|
//shape information for tad offset
|
|
//the squeezed information doesn't render the right strides for
|
|
//tad offset
|
|
if (resultLength == 1 || dimensionLength == shape::rank(xShapeInfo) || tadPack.numberOfTads() == 1) {
|
|
z[0] = execScalar<OpType>(biasCorrected, x, xShapeInfo, extraParams);
|
|
return;
|
|
}
|
|
|
|
auto tadShapeShapeInfo = tadPack.primaryShapeInfo();
|
|
auto tadLength = shape::length(tadPack.primaryShapeInfo());
|
|
auto tadEWS = shape::elementWiseStride(tadPack.primaryShapeInfo());
|
|
auto tadOrder = shape::order(tadPack.primaryShapeInfo());
|
|
|
|
uint tadShapeShapeInfoCast[MAX_RANK];
|
|
const bool canCast = tadEWS == 1 && tadOrder == 'c' ? false : nd4j::DataTypeUtils::castShapeInfo<uint>(tadShapeShapeInfo, tadShapeShapeInfoCast);
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (int r = 0; r < resultLength; r++) {
|
|
|
|
auto tadOffsetForBlock = tadPack.primaryOffsets()[r];
|
|
auto tx = x + tadOffsetForBlock;
|
|
SummaryStatsData<X> comp;
|
|
comp.initWithValue(tx[0]);
|
|
|
|
if (tadEWS == 1 && tadOrder == 'c') {
|
|
for (int i = 1; i < tadLength; i ++) {
|
|
SummaryStatsData <X> indexVal2;
|
|
indexVal2.initWithValue(tx[i]);
|
|
|
|
comp = update(comp, OpType::op(indexVal2, extraParams), extraParams);
|
|
}
|
|
}
|
|
else {
|
|
for (int i = 1; i < tadLength; i ++) {
|
|
auto xOffset = shape::indexOffset(i, tadShapeShapeInfo, tadShapeShapeInfoCast, tadLength, canCast);
|
|
|
|
SummaryStatsData <X> indexVal2;
|
|
indexVal2.initWithValue(tx[xOffset]);
|
|
|
|
comp = update(comp, OpType::op(indexVal2, extraParams), extraParams);
|
|
}
|
|
}
|
|
|
|
z[r] = OpType::getValue(biasCorrected, comp);
|
|
}
|
|
}
|
|
|
|
|
|
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT SummaryStatsReduce, , LIBND4J_TYPES, FLOAT_TYPES);
|
|
}
|
|
} |