cavis/libnd4j/include/loops/cpu/indexreduce.cpp
Alex Black 68ea5f3688
Dev branch merge: dev_20190606 (#7904)
* correct logsoftmax looss (#2)

* Small SameDiff listener fix (#4)

* Various fixes (#6)

* #7839 Fix for asXMatrix and tests

* #7866 EmbeddingSequenceLayer dtype fix + test

* #7856 SameDiff save/load stream methods

* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration

* EvaluationBinary 3d/4d

* More evaluation 3d/4d tests

* #7847 Evaluation empty checks

* Small test ifx

* #7848 Fix median edge case

* Improve DL4J samediff layer tests

* [WIP] FastText wrapper implemented (#8)

* FastText implemented

* Some fixes

* Fix shapes for wordsNearest

* Validation of input vectors

* Fixes

* Fixed test

* Thread tagged

* Some tweaks

* setContextClassLoader for DeallocatorServiceThread

* Numpy format tests (#1)

* Various fixes (#11)

* #7852 SameDiff gather fix

* #7892 SameDiff placeholder to constant conversion

* #7890 validate input rank for MLN/CG init methods

* Fix broken permute shape calculation

* Permute and gather fixes

* Tests

* #7850 LogSumExp fix + test

* Handful of test fixes

* Empty arrays with non-scalar shapes (#10)

* minor rearrangements for lambdas

* empty tensors with non-scalar shapes

* numpy empty tensors with non-scalar shapes

* few more empty tweaks

* Small fixes

* conv3d signature update

* micro fix in batchnorm mkldnn

* Import fixes

* Fix

* MKL-DNN update

* Small fill fix

* fill with empty input + test

* Fixes

* Small error improvement

* Fix

* one special test

* couple of fixes for lstm

* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone

* Fixes

* FP16

* Unsigned

* BFloat16

* Fill op - empty tweaks

* - couple of fixes for empty arrays construction
- stack updated

* strided slice fix

* one transform test

* provide method for reducing shapeInfo in case of input array is empty

* Fixed reduceAlongDimensions to use empty input properly.

* couple of broadcast tests

* couple of tests broadcast tests + tweak to make them pass

* add check of non-empty to methods producing sub-arrays

* Fixed reshapeC with zeros in shape.

* complete empty check in reduce_... legacy ops

* Concat and cumsum/prod

* Tweak to empty shape inference on import

* add empty check to the rest of reduce legacy ops

* one more test

* correct typo in evalReduceShapeInfoEmpty

* Added tests for reduce_* ops to tests with zero shapes.

* few more tests for empty reductions

* Fixed strided_slice op with empty case and tests.

* one more empty reduction test

* Fixed strided_slice test.

* add empty check to NDArray::reshapei

* infOrMax

* empty min/max with infinity tests

* made unstack working correctly with empty arrays

* few IndexReduce tests + tweaks for empty shapes

* add test for empty concat

* few tests fixed

* Validation fix for reductions on empty shapes

* Reverse fix

* Reduction shape calc fixes

* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs

* Range fix

* - NDArray constructor updated for scalars/empty arrays
- few tests fixed

* More fixes

* Empty creator fixes

* concat fix

* concat fix

* TF import tests: allow 'both all NaN' and 'both all inf' to pass

* Slice, zero fraction, and reshape fixes

* transpose, gather

* Zero fraction

* scalar cast fix

* Empty reduction axis support

* few more tests fixed

* Fixed input checks conforming with TF for concat op and tests.

* few tests fixed

* matmul scalar shape fix

* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.

* broadcast bool fix

* few more tests

* few more tests

* correct evalReduceShapeInfoEmpty

* argmax/argmin + tests

* one more empty edge case + one more test

* argmax/argmin/realdiv_bp tweaks

* empty reshape test + fix

* Helper fixes

* Small fixes

* Gather test fix

* Gather test fix

* Small fixes

* reduce scalar zero values

* scalar mean workaround

* Remove debug code

* along dim mean workaround

* one more test

* - equalsTo() tweak for empty arrays
- one more test

* broadcast tweaks
2019-06-15 21:34:34 +10:00

156 lines
5.7 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// Created by raver on 4/9/2018.
//
#include "../indexreduce.h"
#include <op_boilerplate.h>
#include <Loops.h>
#include <types/types.h>
#include <helpers/ConstantTadHelper.h>
#include "../legacy_ops.h"
using namespace simdOps;
namespace functions {
namespace indexreduce {
////////////////////////////////////////////////////////////////////////
template <typename X> Nd4jLong IndexReduce<X>::execScalar( const int opNum, void *x, Nd4jLong *xShapeInfo, void *extraParams) {
RETURNING_DISPATCH_BY_OPNUM_T(execScalar, PARAMS(x, xShapeInfo, extraParams), INDEX_REDUCE_OPS);
}
////////////////////////////////////////////////////////////////////////
template <typename X>
void IndexReduce<X>::exec(const int opNum,
void *x, Nd4jLong *xShapeInfo,
void *extraParams,
Nd4jLong *z, Nd4jLong *zShapeInfo,
int *dimension, int dimensionLength,
Nd4jLong *tadShapeInfo, Nd4jLong *tadOffset) {
DISPATCH_BY_OPNUM_T(exec, PARAMS(x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, tadShapeInfo, tadOffset), INDEX_REDUCE_OPS);
}
////////////////////////////////////////////////////////////////////////
template <typename X>
template<typename OpType>
Nd4jLong IndexReduce<X>::execScalar(void *vx, Nd4jLong *xShapeInfo, void *vextraParams) {
auto x = reinterpret_cast<X *>(vx);
auto extraParams = reinterpret_cast<X *>(vextraParams);
//T startingVal = OpType::startingValue(x);
auto startingIndex = OpType::startingIndexValue(x);
auto len = shape::length(xShapeInfo);
auto xEws = shape::elementWiseStride(xShapeInfo);
nd4j::OmpLaunchHelper info(len);
uint xShapeInfoCast[MAX_RANK];
bool canCastX = nd4j::DataTypeUtils::castShapeInfo(xShapeInfo, xShapeInfoCast);
if (xEws == 1) {
PRAGMA_OMP_PARALLEL_THREADS(info._numThreads)
{
auto local = OpType::startingIndexValue(x);
auto threadNum = omp_get_thread_num();
auto threadOffset = info.getThreadOffset(threadNum);
auto ulen = info.getItersPerThread(threadNum);
for (Nd4jLong i = 0; i < ulen; i++) {
IndexValue<X> curr(x[i + threadOffset], i + threadOffset);
local = OpType::update(local, curr, extraParams);
}
PRAGMA_OMP_CRITICAL
startingIndex = OpType::update(startingIndex, local, extraParams);
}
} else {
PRAGMA_OMP_PARALLEL_THREADS(info._numThreads)
{
auto local = OpType::startingIndexValue(x);
auto threadNum = omp_get_thread_num();
auto threadOffset = info.getThreadOffset(threadNum);
auto ulen = info.getItersPerThread(threadNum);
for (Nd4jLong i = 0; i < ulen; i++) {
auto offset = shape::indexOffset(threadOffset + i, xShapeInfo, xShapeInfoCast, len, canCastX);
IndexValue<X> curr(x[offset], threadOffset + i);
local = OpType::update(local, curr, extraParams);
}
PRAGMA_OMP_CRITICAL
startingIndex = OpType::update(startingIndex, local, extraParams);
}
}
return startingIndex.index;
}
////////////////////////////////////////////////////////////////////////
template <typename X>
template<typename OpType>
void IndexReduce<X>::exec(void *vx, Nd4jLong *xShapeInfo,
void *vextraParams,
Nd4jLong *z, Nd4jLong *zShapeInfo,
int *dimension, int dimensionLength,
Nd4jLong *tadShapeInfo, Nd4jLong *tadOffset) {
auto x = reinterpret_cast<X *>(vx);
auto extraParams = reinterpret_cast<X *>(vextraParams);
const Nd4jLong zLen = shape::length(zShapeInfo);
if(nd4j::ArrayOptions::arrayType(xShapeInfo) == nd4j::ArrayType::EMPTY) {
if(nd4j::ArrayOptions::arrayType(zShapeInfo) == nd4j::ArrayType::EMPTY)
return;
const auto indexValue = OpType::startingIndexValue(x);
PRAGMA_OMP_PARALLEL_FOR_IF(zLen > nd4j::Environment::getInstance()->elementwiseThreshold())
for (uint i = 0; i < zLen; i++)
z[i] = indexValue.index;;
return;
}
if(shape::isScalar(zShapeInfo)) {
z[0] = execScalar<OpType>(x,xShapeInfo,extraParams);
return;
}
auto tadOnlyShapeInfo = tadShapeInfo;
Nd4jLong *tadOffsets = tadOffset;
if (tadOnlyShapeInfo == nullptr || tadOffsets == nullptr) {
if (dimensionLength < 1)
return;
auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(xShapeInfo, dimension, dimensionLength);
tadOnlyShapeInfo = tadPack.primaryShapeInfo();
tadOffsets = tadPack.primaryOffsets();
}
nd4j::IndexReductionLoops<X>::template loopIndexReduce<OpType>(x, xShapeInfo, z, zShapeInfo, tadOnlyShapeInfo, tadOffsets, extraParams);
}
BUILD_SINGLE_TEMPLATE(template class ND4J_EXPORT IndexReduce, , LIBND4J_TYPES);
}
}