* initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored buffer() and shapeInfo() methods usage with NDArray class. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt Graph class methods to use const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt choose op to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt where op shape method to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt lstsq op to use constant empty shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt matrix_diag_part op shape routine to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt determinant ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt mean_pairwssqerr_loss ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for loss ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt log_loss op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt dilation2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted deconv2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted dynamicRNN op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for lstm layer ops. Signed-off-by: shugeo <sgazeos@gmail.com> * few updates Signed-off-by: raver119@gmail.com <raver119@gmail.com> * first cuda tweak Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Adopt constant shapes for sconv2d ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes for gru ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes with shape methods for segment ops and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with unsorted_segment_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with gamma op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods of reduce_stddev ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for reduce_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape method for squeeze op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt strided_slice shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored concat op shape method to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape method for mirror_pad op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted split op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted tile ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Added const cast for mkldnn routines handles. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored logSoftMaxForVector_ routine to conform with proper data and shape pointer casts. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetic changes to proper usage of constant pointers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple shape comparators for strides and addBias helpers to proper use data pointers with inplace option. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored depthToSpace helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored histogram helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored im2col helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored gather and gatherND helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage on percentile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed gather shape with helpers and range buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with space to depth helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage and constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with LUP decomposition> Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored onehot_ helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pad and prefix to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactoed softmax helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed space to batch helpers to use buffers properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed stack and split helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with sparse to dense helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with mindistance_ helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with tile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with legacy pairwise bool ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple of methods to adopt constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed broadcasting with constant shape." Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const usage with inplace reverse and constant shapes with legacy reduction. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored sort to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected sort for constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with special methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored Context to conform with constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * CUDA broadcasting headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * pairwise/indexreduce/random headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored native ops to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * legacy reduce3/scalar headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected pullRow signature and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected routines to proper use of constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with NDArray tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed native ops tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed special concat routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with test. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with a test. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored TAD.h and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored calcStrides* routines to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed miscelaneous errors with constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected definitions for declared functions. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed const shapes with shape routines. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed shape method for broadcastable case. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * xw_plus_b BP shape fn restored Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed signatures with broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Repaired backprops shape methods for a set of operations. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored broadcast bool for cuda. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods for 3 args with const qualifier. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed a couple of kernel signatures for broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels signatures for const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise methods to persistent buffers and shapes usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with scalar kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored indexreduce kernels signatures to use const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise bool kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored random special ops to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored native ops to conform with const shapes and buffers under cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetical changes only. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes and buffers error. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected start pos routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored helpers to use proper methods instead. Signed-off-by: shugeo <sgazeos@gmail.com> * bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected const shape cases with sort and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes for sort. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored kernel declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernel declarations to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed segment helpers kernels declarations and so on to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with segment and solve helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernel declaration with adjustWeight helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed cuda implementations for constant shape helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted const shape usage with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted top_k kernels to use const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernels declarations to adopt const shapes with helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored NDArray definitions to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes with image suppression helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Slight improvement with buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with definitions. Signed-off-by: shugeo <sgazeos@gmail.com> * minor updates on cpu side Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored const shape usage with ConstantDescritor and native ops with cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tear and tile kernels to adopt with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * softmax_loop fix Signed-off-by: raver119 <raver119@gmail.com> * update missing signature Signed-off-by: raver119@gmail.com <raver119@gmail.com> * softmax again Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more missing consts Signed-off-by: raver119 <raver119@gmail.com> * new methods updated Signed-off-by: raver119@gmail.com <raver119@gmail.com> Co-authored-by: shugeo <sgazeos@gmail.com>
286 lines
9.6 KiB
C++
286 lines
9.6 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#ifndef LIBND4J_RANDOM_OPS_H
|
|
#define LIBND4J_RANDOM_OPS_H
|
|
|
|
#ifdef __CUDACC__
|
|
#define random_def __device__ __host__ inline static
|
|
#else
|
|
#define random_def inline static
|
|
#endif
|
|
|
|
// since we can't inherit/overwrite static methods - we just define default impls
|
|
#define method_idx random_def T op(Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator* rng, T *extraParams) { return -1.0f; }
|
|
#define method_X random_def T op(T valueX, Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator* rng, T *extraParams) { return -2.0f; }
|
|
#define method_XY random_def T op(T valueX, T valueY, Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator* rng, T *extraParams) { return -3.0f; }
|
|
|
|
#define no_exec_special static const bool requiresSpecial = false; static inline void specialOp(Nd4jPointer state, const T *x, const Nd4jLong *xShapeBuffer, const T *y, const Nd4jLong *yShapeBuffer, T *z, const Nd4jLong *zShapeBuffer, T *extraArguments) { }
|
|
|
|
#ifdef __CUDACC__
|
|
#define no_exec_special_cuda __device__ static inline void specialOpCuda(Nd4jPointer state, T const* x, Nd4jLong const* xShapeBuffer, T const* y, Nd4jLong const* yShapeBuffer, T *z, Nd4jLong const* zShapeBuffer, T *extraArguments) { }
|
|
#else
|
|
#define no_exec_special_cuda
|
|
#endif
|
|
|
|
#include <helpers/helper_generator.h>
|
|
#include <graph/RandomGenerator.h>
|
|
#include <array/DataTypeUtils.h>
|
|
|
|
namespace randomOps {
|
|
|
|
/**
|
|
* This Op merges two arrays per-element, if probability meets threshold
|
|
*/
|
|
template<typename T>
|
|
class ProbablisticMerge {
|
|
public:
|
|
|
|
no_exec_special
|
|
no_exec_special_cuda
|
|
|
|
method_idx
|
|
method_X
|
|
|
|
random_def T op(T valueX, T valueY, Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator *helper, T *extraParams) {
|
|
T threshold = extraParams[0];
|
|
T randVal = helper->relativeT<T>(idx);
|
|
|
|
return randVal <= threshold ? valueY : valueX;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* This Op produces random values within specified boundaries. Disribution is uniform
|
|
*/
|
|
template<typename T>
|
|
class UniformDistribution {
|
|
public:
|
|
|
|
no_exec_special
|
|
no_exec_special_cuda
|
|
|
|
method_XY
|
|
method_X
|
|
|
|
random_def T op(Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator *helper, T *extraParams) {
|
|
return helper->relativeT<T>(idx, extraParams[0], extraParams[1]);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* This op produces single bernoulli trial
|
|
*/
|
|
template <typename T>
|
|
class BernoulliDistribution {
|
|
public:
|
|
no_exec_special
|
|
no_exec_special_cuda
|
|
|
|
method_XY
|
|
|
|
random_def T op(Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator *helper, T *extraParams) {
|
|
return extraParams[0] >= helper->relativeT<T>(idx) ? (T) 1.0f : (T) 0.0f;
|
|
}
|
|
|
|
random_def T op(T valueX, Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator *helper, T *extraParams) {
|
|
return valueX >= helper->relativeT<T>(idx) ? (T) 1.0f : (T) 0.0f;
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* This op produces single bernoulli trial
|
|
*/
|
|
template <typename T>
|
|
class ExponentialDistribution {
|
|
public:
|
|
no_exec_special
|
|
no_exec_special_cuda
|
|
|
|
method_XY
|
|
|
|
random_def T op(Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator *helper, T *extraParams) {
|
|
T lambda = extraParams[0];
|
|
T x = helper->relativeT<T>(idx, sd::DataTypeUtils::min<T>(), T(1.f) - sd::DataTypeUtils::template min<T>()); // x from (0, 1) without bounds
|
|
T xVal = -sd::math::nd4j_log<T,T>(x);
|
|
|
|
return xVal <= (T)0.f ? (T)0.f : xVal / lambda; //pow<T, T, T>((T) M_E, -(lambda * x));
|
|
}
|
|
|
|
random_def T op(T valueX, Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator *helper, T *extraParams) {
|
|
T lambda = extraParams[0];
|
|
return valueX <= (T)0.f ? (T)0.f : (T)(valueX/lambda); //1.f - sd::math::nd4j_exp<T,T>(-lambda * valueX); //pow<T, T, T>((T) M_E, -(lambda * valueX));
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class PoissonDistribution {
|
|
public:
|
|
no_exec_special
|
|
no_exec_special_cuda
|
|
|
|
method_XY
|
|
|
|
random_def T op(Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator *helper, T *extraParams) {
|
|
T lambda = extraParams[0];
|
|
T x = helper->relativeT(idx, -sd::DataTypeUtils::template max<T>() / 10 , sd::DataTypeUtils::template max<T>() / 10);
|
|
return x <= (T)0.f ? (T)0.f : sd::math::nd4j_igammac<T,T,T>(sd::math::nd4j_floor<T,T>(x), lambda);
|
|
}
|
|
|
|
random_def T op(T valueX, Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator *helper, T *extraParams) {
|
|
T lambda = extraParams[0];
|
|
return valueX <= (T)0.f ? (T)0.f : (T)sd::math::nd4j_igammac<T,T,T>(sd::math::nd4j_floor<T,T>(valueX), lambda);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class GammaDistribution {
|
|
public:
|
|
no_exec_special
|
|
no_exec_special_cuda
|
|
|
|
method_XY
|
|
|
|
random_def T op(Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator *helper, T *extraParams) {
|
|
T alpha = extraParams[0];
|
|
T beta = extraParams[1];
|
|
T x = helper->relativeT(idx, -sd::DataTypeUtils::template max<T>() / 10 , sd::DataTypeUtils::template max<T>() / 10);
|
|
return x <= (T)0.f ? (T)0.f : sd::math::nd4j_igamma<T,T,T>(alpha, x * beta);
|
|
}
|
|
|
|
random_def T op(T valueX, Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator *helper, T *extraParams) {
|
|
T alpha = extraParams[0];
|
|
T beta = extraParams[1];
|
|
return valueX <= (T)0.f ? (T)0.f : sd::math::nd4j_igamma<T,T,T>(alpha, beta * valueX);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Basic DropOut/DropConnect Op
|
|
*/
|
|
template<typename T>
|
|
class DropOut {
|
|
public:
|
|
|
|
no_exec_special
|
|
no_exec_special_cuda
|
|
|
|
method_idx
|
|
method_XY
|
|
|
|
// please note: prob is chance to retain original value
|
|
random_def T op(T valueX, Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator *helper, T *extraParams) {
|
|
T randVal = helper->relativeT<T>(idx);
|
|
return randVal >= extraParams[0] ? (T) 0.0f : valueX;
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
class AlphaDropOut {
|
|
public:
|
|
|
|
no_exec_special
|
|
no_exec_special_cuda
|
|
|
|
method_idx
|
|
method_XY
|
|
|
|
// please note: prob is chance to retain original value
|
|
random_def T op(T valueX, Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator *helper, T *extraParams) {
|
|
T randVal = helper->relativeT<T>(idx);
|
|
// extraParams[0] == p
|
|
// [1] = a
|
|
// [2] = b
|
|
// [3] = alphaPrime
|
|
return randVal >= extraParams[0] ? (T) extraParams[1] * extraParams[3] + extraParams[2] : extraParams[1] * valueX + extraParams[2];
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Inverted DropOut implementation, used in DL4j
|
|
*/
|
|
template<typename T>
|
|
class DropOutInverted {
|
|
public:
|
|
|
|
no_exec_special
|
|
no_exec_special_cuda
|
|
|
|
method_idx
|
|
method_XY
|
|
|
|
// please note: prob is chance to retain original value
|
|
random_def T op(T valueX, Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator *helper, T *extraParams) {
|
|
T prob = extraParams[0];
|
|
T randVal = helper->relativeT<T>(idx);
|
|
return randVal >= prob ? (T) 0.0f : valueX / prob;
|
|
}
|
|
};
|
|
|
|
|
|
template<typename T>
|
|
class Linspace {
|
|
public:
|
|
|
|
no_exec_special
|
|
no_exec_special_cuda
|
|
|
|
method_X
|
|
method_XY
|
|
|
|
random_def T op(Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator *helper, T *extraParams) {
|
|
T from = extraParams[0];
|
|
T to = extraParams[1];
|
|
T step = extraParams[2];
|
|
|
|
if (step == static_cast<T>(0.0f)) {
|
|
step = (T) idx / ((T)length - (T) 1.0f);
|
|
return from * ((T) 1.0f - step) + step * to;
|
|
}
|
|
return from + (idx * step);
|
|
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ExponentialDistributionInv { // inverse exponential distribution
|
|
public:
|
|
no_exec_special
|
|
no_exec_special_cuda
|
|
|
|
method_XY
|
|
|
|
random_def T op(Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator *helper, T *extraParams) {
|
|
T lambda = extraParams[0];
|
|
T x = helper->relativeT(idx, sd::DataTypeUtils::template min<T>(), (T)1.f - sd::DataTypeUtils::template min<T>());
|
|
return -sd::math::nd4j_log<T, T>((T)1.f - x) / lambda;
|
|
}
|
|
|
|
random_def T op(T valueX, Nd4jLong idx, Nd4jLong length, sd::graph::RandomGenerator *helper, T *extraParams) {
|
|
T lambda = extraParams[0];
|
|
return -sd::math::nd4j_log<T, T>((T)1.f - valueX) / lambda; // valueX must be within (0, 1]
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
#endif //LIBND4J_RANDOM_OPS_H
|