cavis/libnd4j/include/ops/declarable/generic/parity_ops/bias_add.cpp

115 lines
3.9 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <op_boilerplate.h>
#if NOT_EXCLUDED(OP_biasadd)
#include <ops/declarable/CustomOperations.h>
#include<ops/declarable/helpers/addBias.h>
namespace nd4j {
namespace ops {
////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(biasadd, 2, 1, true, 0, 0) {
auto input = INPUT_VARIABLE(0);
auto bias = INPUT_VARIABLE(1);
auto output = OUTPUT_VARIABLE(0);
const bool isNCHW = !block.getBArguments()->empty() ? B_ARG(0) : false;
const int channelDim = isNCHW ? 1 : input->rankOf() - 1; // second or last
REQUIRE_TRUE(bias->rankOf() == 1, 0, "BIASADD CUSTOM_OP: bias array should have rank = 1, but got %i instead !", bias->rankOf());
REQUIRE_TRUE(bias->sizeAt(0) == input->sizeAt(channelDim), 0, "BIASADD CUSTOM_OP: shapes of bias %s and input %s arrays are not suitable for broadcast operation along channel dimension %i !", ShapeUtils::shapeAsString(bias).c_str(), ShapeUtils::shapeAsString(input).c_str(), channelDim);
REQUIRE_TRUE(output->isSameShape(input), 0, "BIASADD CUSTOM_OP: wrong shape of output array, expected is %s but got %s instead !", ShapeUtils::shapeAsString(input).c_str(), ShapeUtils::shapeAsString(output).c_str());
helpers::addBias(block, *input, *bias, *output, isNCHW);
// input->applyBroadcast(nd4j::broadcast::Add, {channelDim}, bias, output);
return Status::OK();
}
DECLARE_SYN(bias_add, biasadd);
////////////////////////////////////////////////////////////////////
DECLARE_SHAPE_FN(biasadd) {
auto xShape = inputShape->at(0);
auto yShape = inputShape->at(1);
auto dtype = ArrayOptions::dataType(yShape);
return SHAPELIST(ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(xShape, dtype)));
}
DECLARE_TYPES(biasadd) {
getOpDescriptor()
->setAllowedInputTypes(nd4j::DataType::ANY)
->setAllowedOutputTypes({ALL_FLOATS});
}
////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(biasadd_bp, 3, 2, false, 0, 0) {
auto input = INPUT_VARIABLE(0);
auto bias = INPUT_VARIABLE(1);
auto gradO = INPUT_VARIABLE(2);
auto gradI = OUTPUT_VARIABLE(0);
auto gradB = OUTPUT_VARIABLE(1);
const bool isNCHW = !block.getBArguments()->empty() ? B_ARG(0) : false;
const int channelDim = isNCHW ? 1 : input->rankOf() - 1; // second or last
gradI->assign(gradO);
gradO->reduceAlongDimension(nd4j::reduce::Sum, gradB, ShapeUtils::evalDimsToExclude(gradO->rankOf(), {channelDim}));
return ND4J_STATUS_OK;
}
DECLARE_SYN(BiasAddGrad, biasadd_bp);
////////////////////////////////////////////////////////////////////
DECLARE_SHAPE_FN(biasadd_bp) {
auto input = inputShape->at(0);
auto bias = inputShape->at(1);
Nd4jLong* epsShape;
Nd4jLong* gradShape;
COPY_SHAPE(input, epsShape);
COPY_SHAPE(bias, gradShape);
return SHAPELIST(CONSTANT(epsShape), CONSTANT(gradShape));
}
DECLARE_TYPES(biasadd_bp) {
getOpDescriptor()
->setAllowedInputTypes(nd4j::DataType::ANY)
->setAllowedOutputTypes({ALL_FLOATS});
}
}
}
#endif