114 lines
6.3 KiB
Plaintext
114 lines
6.3 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author GS <sgazeos@gmail.com>, created on 16.01.2019
|
|
//
|
|
|
|
#include <loops/special_kernels.h>
|
|
|
|
namespace nd4j {
|
|
static Nd4jLong __device__ __noinline__ _getIndexOffset(Nd4jLong index, Nd4jLong *shapeInfo) {
|
|
return shape::getIndexOffset(index, shapeInfo);
|
|
}
|
|
|
|
static Nd4jLong __device__ __noinline__ _subArrayOffset(Nd4jLong index, Nd4jLong *shapeInfoA, Nd4jLong *shapeInfoB) {
|
|
return shape::subArrayOffset(index, shapeInfoA, shapeInfoB);
|
|
}
|
|
|
|
static Nd4jLong __device__ __noinline__ _length(Nd4jLong *shapeInfo) {
|
|
return shape::length(shapeInfo);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// tileKernel:
|
|
// input: (inputBuffer and inputShape) - NDArray buffer and shape to tile
|
|
// output: (outputBuffer and outputShape) - NDArray to tile input
|
|
// resultLength - length for output array
|
|
template<typename T>
|
|
static __global__ void
|
|
tileKernel(void const *inputBuffer, Nd4jLong *inputShape, void *outputBuffer, Nd4jLong *outputShape,
|
|
Nd4jLong resultLength) {
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// Original code to transform in cuda-based
|
|
auto tid = blockIdx.x * blockDim.x + threadIdx.x; // copy linear sequence of elements, so one-level threading
|
|
int totalThreads = gridDim.x * blockDim.x;
|
|
if (shape::order(outputShape) == 'c') { // ews == 1 always here
|
|
for (int i = tid; i < resultLength; i += totalThreads) {
|
|
auto yOffset = _subArrayOffset(i, outputShape, inputShape);
|
|
*(reinterpret_cast<T *>(outputBuffer) + i) = *(reinterpret_cast<T const *>(inputBuffer) + yOffset);
|
|
}
|
|
} else {
|
|
for (int i = tid; i < resultLength; i += totalThreads) {
|
|
auto xOffset = _getIndexOffset(i, outputShape);
|
|
auto yOffset = _subArrayOffset(i, outputShape, inputShape);
|
|
*(reinterpret_cast<T *>(outputBuffer) + xOffset) = *(reinterpret_cast<T const *>(inputBuffer) + yOffset);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template __global__ void tileKernel,(void const* inputBuffer, Nd4jLong* inputShape, void* outputBuffer, Nd4jLong* outputShape, Nd4jLong resultLength), LIBND4J_TYPES);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
void tileKernelH(void const *inputBuffer, Nd4jLong *inputShape, void *outputBuffer, Nd4jLong *outputShape, Nd4jLong resultLength, cudaStream_t *stream) {
|
|
dim3 launchDims(256, 512, 8192);
|
|
tileKernel<T> << < launchDims.x, launchDims.y, launchDims.z, *stream>>>(inputBuffer, inputShape, outputBuffer, outputShape, resultLength);
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void tileKernelH, (void const* inputBuffer, Nd4jLong* inputShape, void* outputBuffer, Nd4jLong* outputShape, Nd4jLong resultLength, cudaStream_t *stream), LIBND4J_TYPES);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// enhancement for tileKernel to different input and output data types: X - output type, Y - input type
|
|
template<typename X, typename Y>
|
|
static __global__ void
|
|
tileKernelDouble(void const *inputBuffer, Nd4jLong *inputShape, void *outputBuffer, Nd4jLong *outputShape, Nd4jLong resultLength, Nd4jLong ews) {
|
|
char ordering = shape::order(outputShape);
|
|
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int totalThreads = gridDim.x * blockDim.x;
|
|
|
|
if (ordering == 'c' && ews == 1) { // ews == 1 always here
|
|
for (int i = tid; i < resultLength; i += totalThreads) {
|
|
auto yOffset = _subArrayOffset(i, outputShape, inputShape);
|
|
*(reinterpret_cast<X *>(outputBuffer) + i) = static_cast<X>(*(reinterpret_cast<Y const *>(inputBuffer) + yOffset));
|
|
}
|
|
} else if (ordering == 'c' && ews > 1) {
|
|
for (int i = tid; i < resultLength; i += totalThreads) {
|
|
auto yOffset = _subArrayOffset(i, outputShape, inputShape);
|
|
*(reinterpret_cast<X *>(outputBuffer) + i * ews) = static_cast<X>(*(reinterpret_cast<Y const *>(inputBuffer) + yOffset));
|
|
}
|
|
} else {
|
|
|
|
for (int i = tid; i < resultLength; i += totalThreads) {
|
|
|
|
auto xOffset = _getIndexOffset(i, outputShape);
|
|
auto yOffset = _subArrayOffset(i, outputShape, inputShape);
|
|
*(reinterpret_cast<X *>(outputBuffer) + xOffset) = static_cast<X>(*(reinterpret_cast<Y const *>(inputBuffer) + yOffset));
|
|
}
|
|
}
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE_TWICE(template __global__ void tileKernelDouble, (void const* inputBuffer, Nd4jLong* inputShape, void* outputBuffer, Nd4jLong* outputShape, Nd4jLong resultLength, Nd4jLong ews), LIBND4J_TYPES);
|
|
|
|
template<typename X, typename Y>
|
|
void tileKernelHH(void const *inputBuffer, Nd4jLong *inputShape, void *outputBuffer, Nd4jLong *outputShape, Nd4jLong resultLength, Nd4jLong ews, cudaStream_t *stream) {
|
|
dim3 launchDims(256, 512, 8192);
|
|
tileKernelDouble<X, Y><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(inputBuffer, inputShape, outputBuffer, outputShape, resultLength, ews);
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE_TWICE(template void tileKernelHH, (void const* inputBuffer, Nd4jLong* inputShape, void* outputBuffer, Nd4jLong* outputShape, Nd4jLong resultLength, Nd4jLong ews, cudaStream_t *stream),LIBND4J_TYPES);
|
|
} |