343 lines
14 KiB
Plaintext
343 lines
14 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
* Copyright (c) 2019 Konduit K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
#include <exceptions/cuda_exception.h>
|
|
#include <helpers/PointersManager.h>
|
|
#include <math/templatemath.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Z>
|
|
static __global__ void avgPooling2dCuda(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) {
|
|
|
|
// input is [bS, iC, iH, iW]
|
|
// output is [bS, iC, oH, oW]
|
|
|
|
const auto x = reinterpret_cast<const X*>(vx);
|
|
auto z = reinterpret_cast<Z*>(vz);
|
|
|
|
__shared__ int bS, iC, oH, oW, iH, iW, strideB, strideC, strideY, strideX, strideOB, strideOC, strideOY, strideOX, length, kHEff, kWEff;
|
|
|
|
if (threadIdx.x == 0) {
|
|
bS = shape::sizeAt(xShapeInfo, 0);
|
|
iC = shape::sizeAt(xShapeInfo, 1);
|
|
oH = shape::sizeAt(zShapeInfo, 2);
|
|
oW = shape::sizeAt(zShapeInfo, 3);
|
|
iH = shape::sizeAt(xShapeInfo, 2);
|
|
iW = shape::sizeAt(xShapeInfo, 3);
|
|
|
|
strideB = shape::stride(xShapeInfo)[0];
|
|
strideC = shape::stride(xShapeInfo)[1];
|
|
strideY = shape::stride(xShapeInfo)[2];
|
|
strideX = shape::stride(xShapeInfo)[3];
|
|
|
|
strideOB = shape::stride(zShapeInfo)[0];
|
|
strideOC = shape::stride(zShapeInfo)[1];
|
|
strideOY = shape::stride(zShapeInfo)[2];
|
|
strideOX = shape::stride(zShapeInfo)[3];
|
|
|
|
length = shape::length(zShapeInfo);
|
|
|
|
//Replace kernel H/W with *effective* kernel H/W accounting for dilatyon
|
|
kHEff = kH + (kH-1)*(dH-1);
|
|
kWEff = kW + (kW-1)*(dW-1);
|
|
}
|
|
__syncthreads();
|
|
|
|
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (int index = tid; index < length; index += blockDim.x * gridDim.x) {
|
|
|
|
const int pw = index % oW;
|
|
const int ph = (index / oW) % oH;
|
|
const int c = (index / oW / oH) % iC;
|
|
const int n = index / oW / oH / iC;
|
|
|
|
int hstart = sH * ph - pH;
|
|
int wstart = sW * pw - pW;
|
|
int hend = hstart + kHEff;
|
|
int wend = wstart + kWEff;
|
|
|
|
if(hstart < 0){
|
|
int f = sd::math::nd4j_ceil<Z,int>((Z) -hstart / (Z)dH);
|
|
hstart += f * dH;
|
|
}
|
|
if(wstart < 0){
|
|
int f = sd::math::nd4j_ceil<Z,int>((Z) -wstart / (Z) dW);
|
|
wstart += f * dW;
|
|
}
|
|
if(hend > iH){
|
|
int f = sd::math::nd4j_ceil<Z,int>((Z) (hend-iH) / (Z) dH);
|
|
hend -= f * dH;
|
|
}
|
|
if(wend > iW){
|
|
int f = sd::math::nd4j_ceil<Z,int>((Z) (wend-iW) / (Z) dW);
|
|
wend -= f * dW;
|
|
}
|
|
|
|
//Accounts for dilation
|
|
int pool_size = sd::math::nd4j_ceil<double,int>((double) (hend-hstart) / (double) dH) * sd::math::nd4j_ceil<double,int>((double) (wend-wstart) / (double) dW);
|
|
|
|
Z sum = 0.0f;
|
|
|
|
const X *inSlice = x + (n * strideB + c * strideC);
|
|
|
|
for (int h = hstart; h < hend; h += dH)
|
|
for (int w = wstart; w < wend; w += dW)
|
|
sum += static_cast<Z>(inSlice[h * strideY + w * strideX]);
|
|
|
|
int divide_factor = pool_size; //Case 0: exclude padding
|
|
if (extraParam0 == 1) //Case 1: include padding
|
|
divide_factor = kH * kW;
|
|
|
|
z[n * strideOB + c * strideOC + pw * strideOX + ph * strideOY] = sum / static_cast<Z>(divide_factor);
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Z>
|
|
static void avgPooling2dCudaLauncher(sd::LaunchContext & block, const void *vx, const Nd4jLong *vxShapeInfo, void *vz, const Nd4jLong *vzShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) {
|
|
avgPooling2dCuda<X, Z><<<512, 512, 4192, *block.getCudaStream()>>>(vx, vxShapeInfo, vz, vzShapeInfo, kH, kW, sH, sW, pH, pW, dH, dW, extraParam0);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Z>
|
|
static __global__ void pnormPooling2dCuda(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) {
|
|
|
|
// input is [bS, iC, iH, iW]
|
|
// output is [bS, iC, oH, oW]
|
|
|
|
const auto x = reinterpret_cast<const X*>(vx);
|
|
auto z = reinterpret_cast<Z*>(vz);
|
|
|
|
__shared__ int bS, iC, oH, oW, iH, iW, strideB, strideC, strideY, strideX, strideOB, strideOC, strideOY, strideOX, length, kHEff, kWEff;
|
|
__shared__ bool fOrder;
|
|
|
|
if (threadIdx.x == 0) {
|
|
bS = shape::sizeAt(xShapeInfo, 0);
|
|
iC = shape::sizeAt(xShapeInfo, 1);
|
|
oH = shape::sizeAt(zShapeInfo, 2);
|
|
oW = shape::sizeAt(zShapeInfo, 3);
|
|
iH = shape::sizeAt(xShapeInfo, 2);
|
|
iW = shape::sizeAt(xShapeInfo, 3);
|
|
|
|
strideB = shape::stride(xShapeInfo)[0];
|
|
strideC = shape::stride(xShapeInfo)[1];
|
|
strideY = shape::stride(xShapeInfo)[2];
|
|
strideX = shape::stride(xShapeInfo)[3];
|
|
|
|
strideOB = shape::stride(zShapeInfo)[0];
|
|
strideOC = shape::stride(zShapeInfo)[1];
|
|
strideOY = shape::stride(zShapeInfo)[2];
|
|
strideOX = shape::stride(zShapeInfo)[3];
|
|
|
|
length = shape::length(zShapeInfo);
|
|
|
|
//Replace kernel H/W with *effective* kernel H/W accounting for dilatyon
|
|
kHEff = kH + (kH-1)*(dH-1);
|
|
kWEff = kW + (kW-1)*(dW-1);
|
|
}
|
|
__syncthreads();
|
|
|
|
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (int index = tid; index < length; index += blockDim.x * gridDim.x) {
|
|
|
|
const int pw = index % oW;
|
|
const int ph = (index / oW) % oH;
|
|
const int c = (index / oW / oH) % iC;
|
|
const int n = index / oW / oH / iC;
|
|
|
|
int hstart = sH * ph - pH;
|
|
int wstart = sW * pw - pW;
|
|
int hend = hstart + kHEff;
|
|
int wend = wstart + kWEff;
|
|
|
|
if (hstart < 0) {
|
|
int f = sd::math::nd4j_ceil<Z, int>((Z) -hstart / (Z) dH);
|
|
hstart += f * dH;
|
|
}
|
|
if (wstart < 0) {
|
|
int f = sd::math::nd4j_ceil<Z, int>((Z) -wstart / (Z) dW);
|
|
wstart += f * dW;
|
|
}
|
|
if (hend > iH) {
|
|
int f = sd::math::nd4j_ceil<Z, int>((Z) (hend - iH) / (Z) dH);
|
|
hend -= f * dH;
|
|
}
|
|
if (wend > iW) {
|
|
int f = sd::math::nd4j_ceil<Z, int>((Z) (wend - iW) / (Z) dW);
|
|
wend -= f * dW;
|
|
}
|
|
//Accounts for dilation
|
|
int pool_size = sd::math::nd4j_ceil<double, int>((double) (hend - hstart) / (double) dH) *
|
|
sd::math::nd4j_ceil<double, int>((double) (wend - wstart) / (double) dW);
|
|
|
|
Z sum = 0.f;
|
|
|
|
const X *inSlice = x + (n * strideB + c * strideC);
|
|
|
|
for (int h = hstart; h < hend; h += dH)
|
|
for (int w = wstart; w < wend; w += dW)
|
|
sum += sd::math::nd4j_pow<Z, Z, Z>(static_cast<Z>(sd::math::nd4j_abs<X>(inSlice[h * strideY + w * strideX])), extraParam0);
|
|
|
|
z[n * strideOB + c * strideOC + pw * strideOX + ph * strideOY] = sd::math::nd4j_pow<Z, Z, Z>(sum, (Z) 1.0f / extraParam0);
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Z>
|
|
static void pnormPooling2dCudaLauncher(sd::LaunchContext & block, const void *vx, const Nd4jLong *vxShapeInfo, void *vz, const Nd4jLong *vzShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) {
|
|
pnormPooling2dCuda<X, Z><<<512, 512, 4192, *block.getCudaStream()>>>(vx, vxShapeInfo, vz, vzShapeInfo, kH, kW, sH, sW, pH, pW, dH, dW, extraParam0);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Z>
|
|
static __global__ void maxPooling2dCuda(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) {
|
|
|
|
// input is [bS, iC, iH, iW]
|
|
// output is [bS, iC, oH, oW]
|
|
|
|
const auto x = reinterpret_cast<const X*>(vx);
|
|
auto z = reinterpret_cast<Z*>(vz);
|
|
|
|
__shared__ int bS, iC, oH, oW, iH, iW, strideB, strideC, strideY, strideX, strideOB, strideOC, strideOY, strideOX, length, kHEff, kWEff;
|
|
__shared__ bool fOrder;
|
|
|
|
if (threadIdx.x == 0) {
|
|
bS = shape::sizeAt(xShapeInfo, 0);
|
|
iC = shape::sizeAt(xShapeInfo, 1);
|
|
oH = shape::sizeAt(zShapeInfo, 2);
|
|
oW = shape::sizeAt(zShapeInfo, 3);
|
|
iH = shape::sizeAt(xShapeInfo, 2);
|
|
iW = shape::sizeAt(xShapeInfo, 3);
|
|
|
|
strideB = shape::stride(xShapeInfo)[0];
|
|
strideC = shape::stride(xShapeInfo)[1];
|
|
strideY = shape::stride(xShapeInfo)[2];
|
|
strideX = shape::stride(xShapeInfo)[3];
|
|
|
|
strideOB = shape::stride(zShapeInfo)[0];
|
|
strideOC = shape::stride(zShapeInfo)[1];
|
|
strideOY = shape::stride(zShapeInfo)[2];
|
|
strideOX = shape::stride(zShapeInfo)[3];
|
|
|
|
length = shape::length(zShapeInfo);
|
|
|
|
//Replace kernel H/W with *effective* kernel H/W accounting for dilatyon
|
|
kHEff = kH + (kH-1)*(dH-1);
|
|
kWEff = kW + (kW-1)*(dW-1);
|
|
}
|
|
__syncthreads();
|
|
|
|
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (int index = tid; index < length; index += blockDim.x * gridDim.x) {
|
|
|
|
const int pw = index % oW;
|
|
const int ph = (index / oW) % oH;
|
|
const int c = (index / oW / oH) % iC;
|
|
const int n = index / oW / oH / iC;
|
|
|
|
int hstart = sH * ph - pH;
|
|
int wstart = sW * pw - pW;
|
|
int hend = hstart + kHEff;
|
|
int wend = wstart + kWEff;
|
|
|
|
if(hstart < 0){
|
|
int f = sd::math::nd4j_ceil<Z,int>((Z) -hstart / (Z)dH);
|
|
hstart += f * dH;
|
|
}
|
|
if(wstart < 0){
|
|
int f = sd::math::nd4j_ceil<Z,int>((Z) -wstart / (Z) dW);
|
|
wstart += f * dW;
|
|
}
|
|
if(hend > iH){
|
|
int f = sd::math::nd4j_ceil<Z,int>((Z) (hend-iH) / (Z) dH);
|
|
hend -= f * dH;
|
|
}
|
|
if(wend > iW){
|
|
int f = sd::math::nd4j_ceil<Z,int>((Z) (wend-iW) / (Z) dW);
|
|
wend -= f * dW;
|
|
}
|
|
//Accounts for dilation
|
|
int pool_size = sd::math::nd4j_ceil<double,int>((double) (hend-hstart) / (double) dH) * sd::math::nd4j_ceil<double,int>((double) (wend-wstart) / (double) dW);
|
|
|
|
Z max = -sd::DataTypeUtils::max<Z>();
|
|
|
|
const X *inSlice = x + (n * strideB + c * strideC);
|
|
|
|
for (int h = hstart; h < hend; h += dH) {
|
|
for (int w = wstart; w < wend; w += dW) {
|
|
Z v = static_cast<Z>(inSlice[h * strideY + w * strideX]);
|
|
if (v > max)
|
|
max = v;
|
|
}
|
|
}
|
|
|
|
z[n * strideOB + c * strideOC + pw * strideOX + ph * strideOY] = max;
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Z>
|
|
static void maxPooling2dCudaLauncher(sd::LaunchContext & block, const void *vx, const Nd4jLong *vxShapeInfo, void *vz, const Nd4jLong *vzShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) {
|
|
maxPooling2dCuda<X,Z><<<512, 512, 4192, *block.getCudaStream()>>>(vx, vxShapeInfo, vz, vzShapeInfo, kH, kW, sH, sW, pH, pW, dH, dW, extraParam0);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void ConvolutionUtils::pooling2d(sd::graph::Context& block, const NDArray& input, NDArray& output, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const PoolingType poolingMode, const int extraParam0) {
|
|
|
|
if(!input.isActualOnDeviceSide()) input.syncToDevice();
|
|
|
|
switch (poolingMode) {
|
|
|
|
case MAX_POOL: {
|
|
BUILD_SINGLE_SELECTOR_TWICE(input.dataType(), maxPooling2dCudaLauncher, (*block.launchContext(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), kH, kW, sH, sW, pH, pW, dH, dW, extraParam0), NUMERIC_TYPES);
|
|
}
|
|
break;
|
|
case AVG_POOL: {
|
|
BUILD_SINGLE_SELECTOR_TWICE(input.dataType(), avgPooling2dCudaLauncher, (*block.launchContext(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), kH, kW, sH, sW, pH, pW, dH, dW, extraParam0), NUMERIC_TYPES);
|
|
}
|
|
break;
|
|
case PNORM_POOL: {
|
|
BUILD_SINGLE_SELECTOR_TWICE(input.dataType(), pnormPooling2dCudaLauncher, (*block.launchContext(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), kH, kW, sH, sW, pH, pW, dH, dW, extraParam0), FLOAT_TYPES);
|
|
}
|
|
break;
|
|
default:
|
|
throw std::runtime_error("Pooling2D: Unknown PoolingType used");
|
|
}
|
|
|
|
output.tickWriteDevice();
|
|
input.tickReadDevice();
|
|
|
|
auto result = cudaStreamSynchronize(*block.launchContext()->getCudaStream());
|
|
if (result != 0)
|
|
throw cuda_exception::build("Pooling2D failed", result);
|
|
}
|
|
|
|
}
|
|
}
|