267 lines
8.4 KiB
C++
267 lines
8.4 KiB
C++
/* ******************************************************************************
|
|
*
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* See the NOTICE file distributed with this work for additional
|
|
* information regarding copyright ownership.
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Oleh Semeniv (oleg.semeniv@gmail.com)
|
|
//
|
|
//
|
|
// @author AbdelRauf (rauf@konduit.ai)
|
|
//
|
|
|
|
#ifndef LIBND4J_HEADERS_IMAGES_H
|
|
#define LIBND4J_HEADERS_IMAGES_H
|
|
|
|
#include <ops/declarable/headers/common.h>
|
|
#include <ops/declarable/CustomOperations.h>
|
|
#include <helpers/ConstantTadHelper.h>
|
|
#include <execution/Threads.h>
|
|
#include <ops/declarable/helpers/imagesHelpers.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
|
|
|
|
/**
|
|
* Rgb To Hsv
|
|
* Input arrays:
|
|
* 0 - input array with rank >= 1, must have at least one dimension equal 3, that is dimension containing channels.
|
|
* Int arguments:
|
|
* 0 - optional argument, corresponds to dimension with 3 channels
|
|
*/
|
|
#if NOT_EXCLUDED(OP_rgb_to_hsv)
|
|
DECLARE_CONFIGURABLE_OP(rgb_to_hsv, 1, 1, true, 0, 0);
|
|
#endif
|
|
|
|
/**
|
|
* Hsv To Rgb
|
|
* Input arrays:
|
|
* 0 - input array with rank >= 1, must have at least one dimension equal 3, that is dimension containing channels.
|
|
* Int arguments:
|
|
* 0 - optional argument, corresponds to dimension with 3 channels
|
|
*/
|
|
#if NOT_EXCLUDED(OP_hsv_to_rgb)
|
|
DECLARE_CONFIGURABLE_OP(hsv_to_rgb, 1, 1, true, 0, 0);
|
|
#endif
|
|
|
|
/**
|
|
* Rgb To GrayScale
|
|
* Input arrays:
|
|
* 0 - input array with rank >= 1, the RGB tensor to convert. Last dimension must have size 3 and should contain RGB values.
|
|
*/
|
|
#if NOT_EXCLUDED(OP_rgb_to_grs)
|
|
DECLARE_CUSTOM_OP(rgb_to_grs, 1, 1, false, 0, 0);
|
|
#endif
|
|
|
|
/**
|
|
* Rgb To Yuv
|
|
* Input arrays:
|
|
* 0 - input array with rank >= 1, must have at least one dimension equal 3, that is dimension containing channels.
|
|
* Int arguments:
|
|
* 0 - optional argument, corresponds to dimension with 3 channels
|
|
*/
|
|
#if NOT_EXCLUDED(OP_rgb_to_yuv)
|
|
DECLARE_CONFIGURABLE_OP(rgb_to_yuv, 1, 1, true, 0, 0);
|
|
#endif
|
|
|
|
/**
|
|
* Yuv To Rgb
|
|
* Input arrays:
|
|
* 0 - input array with rank >= 1, must have at least one dimension equal 3, that is dimension containing channels.
|
|
* Int arguments:
|
|
* 0 - optional argument, corresponds to dimension with 3 channels
|
|
*/
|
|
#if NOT_EXCLUDED(OP_rgb_to_yuv)
|
|
DECLARE_CONFIGURABLE_OP(yuv_to_rgb, 1, 1, true, 0, 0);
|
|
#endif
|
|
|
|
/**
|
|
* Rgb To Yiq
|
|
* Input arrays:
|
|
* 0 - input array with rank >= 1, must have at least one dimension equal 3, that is dimension containing channels.
|
|
* Int arguments:
|
|
* 0 - optional argument, corresponds to dimension with 3 channels
|
|
*/
|
|
#if NOT_EXCLUDED(OP_rgb_to_yiq)
|
|
DECLARE_CONFIGURABLE_OP(rgb_to_yiq, 1, 1, true, 0, 0);
|
|
#endif
|
|
|
|
/**
|
|
* Yiq To Rgb
|
|
* Input arrays:
|
|
* 0 - input array with rank >= 1, must have at least one dimension equal 3, that is dimension containing channels.
|
|
* Int arguments:
|
|
* 0 - optional argument, corresponds to dimension with 3 channels
|
|
*/
|
|
#if NOT_EXCLUDED(OP_yiq_to_rgb)
|
|
DECLARE_CONFIGURABLE_OP(yiq_to_rgb, 1, 1, true, 0, 0);
|
|
#endif
|
|
|
|
/**
|
|
* resize_images - resize image with given size and method
|
|
* there are 4 methods allowed: RESIZE_BILINEAR(0), RESIZE_NEIGHBOR(1), RESIZE_AREA(2) and RESIZE_BICUBIC(3)
|
|
* inputs:
|
|
* 0 - 4D tensor with shape {batch, height, width, channels}
|
|
* 1 - 1D integer tensor with {new_height, new_width} (optional)
|
|
* 2 - 0D integer tensor with method (0 to 3) (optional)
|
|
*
|
|
* int args:
|
|
* 0 - new_height
|
|
* 1 - new_width
|
|
* 2 - method
|
|
*
|
|
* bool args:
|
|
* 0 - align corners (default false) - optional
|
|
* 1 - preserve_aspect_ratio (default false) - optional
|
|
*
|
|
* CAUTION: one of methods can be used to give size and method - as tensors or as int args only
|
|
*
|
|
* output:
|
|
* 0 - 4D float32 tensor with shape {batch, new_height, new_width, channels}
|
|
*
|
|
*/
|
|
#if NOT_EXCLUDED(OP_resize_images)
|
|
DECLARE_CUSTOM_OP(resize_images, 1,1,false, 0, 0);
|
|
#endif
|
|
|
|
/**
|
|
* This op make bilinear or nearest neighbor interpolated resize for given tensor
|
|
*
|
|
* input array:
|
|
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels) numeric type
|
|
* 1 - 2D-Tensor with shape (num_boxes, 4) float type
|
|
* 2 - 1D-Tensor with shape (num_boxes) int type
|
|
* 3 - 1D-Tensor with 2 values (newWidth, newHeight) (optional) int type
|
|
*
|
|
* float arguments (optional)
|
|
* 0 - exprapolation_value (optional) default 0.f
|
|
*
|
|
* int arguments: (optional)
|
|
* 0 - mode (default 0 - bilinear interpolation)
|
|
*
|
|
* output array:
|
|
* the 4D-Tensor with resized to crop_size images given - float type
|
|
*/
|
|
#if NOT_EXCLUDED(OP_crop_and_resize)
|
|
DECLARE_CUSTOM_OP(crop_and_resize, 4, 1, false, -1, -1);
|
|
#endif
|
|
|
|
/**
|
|
* This op make bilinear interpolated resize for given tensor
|
|
*
|
|
* input array:
|
|
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
|
* 1 - 1D-Tensor with 2 values (newWidth, newHeight) (optional)
|
|
*
|
|
* int arguments: (optional)
|
|
* 0 - new width
|
|
* 1 - new height
|
|
*
|
|
* output array:
|
|
* the 4D-Tensor with calculated backproped dots
|
|
*
|
|
* CAUTION: either size tensor or a pair of int params should be provided.
|
|
*/
|
|
|
|
#if NOT_EXCLUDED(OP_resize_bilinear)
|
|
DECLARE_CUSTOM_OP(resize_bilinear, 1, 1, false, 0, -2);
|
|
#endif
|
|
|
|
/**
|
|
* This op make nearest neighbor interpolated resize for given tensor
|
|
*
|
|
* input array:
|
|
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
|
* 1 - 1D-Tensor with 2 values (newWidth, newHeight) (optional)
|
|
*
|
|
* int arguments: (optional)
|
|
* 0 - new width
|
|
* 1 - new height
|
|
*
|
|
* output array:
|
|
* the 4D-Tensor with resized image (shape is {batch, newWidth, newHeight, channels})
|
|
*
|
|
* CAUTION: either size tensor or a pair of int params should be provided.
|
|
*/
|
|
|
|
#if NOT_EXCLUDED(OP_resize_nearest_neighbor)
|
|
DECLARE_CUSTOM_OP(resize_nearest_neighbor, 1, 1, false, 0, -2);
|
|
#endif
|
|
|
|
/**
|
|
* This op make bicubic interpolated resize for given tensor
|
|
*
|
|
* input array:
|
|
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
|
* 1 - 1D-Tensor with 2 values (newWidth, newHeight)
|
|
*
|
|
* output array:
|
|
* the 4D-Tensor with resized image (shape is {batch, newWidth, newHeight, channels})
|
|
*
|
|
*/
|
|
#if NOT_EXCLUDED(OP_resize_bicubic)
|
|
DECLARE_CUSTOM_OP(resize_bicubic, 1, 1, false, 0, -2);
|
|
#endif
|
|
|
|
/**
|
|
* This op make area interpolated resize (as OpenCV INTER_AREA algorithm) for given tensor
|
|
*
|
|
* input array:
|
|
* 0 - images - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
|
* 1 - size - 1D-Tensor with 2 values (newWidth, newHeight) (if missing a pair of integer args should be provided).
|
|
*
|
|
* int args: - proveded only when size tensor is missing
|
|
* 0 - new height
|
|
* 1 - new width
|
|
* boolean args:
|
|
* 0 - align_corners - optional (default is false)
|
|
*
|
|
* output array:
|
|
* the 4D-Tensor with resized image (shape is {batch, newWidth, newHeight, channels})
|
|
*
|
|
*/
|
|
#if NOT_EXCLUDED(OP_resize_area)
|
|
DECLARE_CUSTOM_OP(resize_area, 1, 1, false, 0, -2);
|
|
#endif
|
|
|
|
/**
|
|
* This op make interpolated resize for given tensor with given algorithm.
|
|
* Supported algorithms are bilinear, bicubic, nearest_neighbor, lanczos5, gaussian, area and mitchellcubic.
|
|
*
|
|
* input array:
|
|
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
|
* 1 - 1D-Tensor with 2 values (newWidth, newHeight)
|
|
*
|
|
* optional int args:
|
|
* 0 - algorithm - bilinear by default
|
|
* optional bool args:
|
|
* 0 - preserve_aspect_ratio - default False
|
|
* 1 - antialias - default False
|
|
*
|
|
* output array:
|
|
* the 4D-Tensor with resized by given algorithm image (shape is {batch, newWidth, newHeight, channels})
|
|
*
|
|
*/
|
|
|
|
#if NOT_EXCLUDED(OP_image_resize)
|
|
DECLARE_CUSTOM_OP(image_resize, 2, 1, false, 0, 0);
|
|
#endif
|
|
|
|
}
|
|
}
|
|
#endif
|