145 lines
5.7 KiB
C++
145 lines
5.7 KiB
C++
/* ******************************************************************************
|
|
*
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* See the NOTICE file distributed with this work for additional
|
|
* information regarding copyright ownership.
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// xw_plus_b op. Created by GS <george@skymind.io> 31.01.2018
|
|
// @author Oleg Semeniv <oleg.semeniv@gmail.com>
|
|
//
|
|
//
|
|
|
|
#include <system/op_boilerplate.h>
|
|
#if NOT_EXCLUDED(OP_xw_plus_b)
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
#include <ops/declarable/helpers/matmul.h>
|
|
#include <helpers/MmulHelper.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
CUSTOM_OP_IMPL(xw_plus_b, 3, 1, false, 0, 0) {
|
|
|
|
auto x = INPUT_VARIABLE(0);
|
|
|
|
auto b = INPUT_VARIABLE(2);
|
|
auto z = OUTPUT_VARIABLE(0);
|
|
|
|
if (x->isEmpty() || INPUT_VARIABLE(1)->isEmpty() || b->isEmpty())
|
|
return Status::OK();
|
|
|
|
const bool bTranspose = (block.getIArguments()->size() > 0 ? INT_ARG(0) == 1 : false);
|
|
|
|
auto w = bTranspose ? new NDArray(INPUT_VARIABLE(1)->transpose()) : INPUT_VARIABLE(1);
|
|
|
|
REQUIRE_TRUE(x->rankOf() == 2, 0, "xw_plus_b: Input x array should have rank equal 2, but got instead %i!", x->rankOf());
|
|
REQUIRE_TRUE(w->rankOf() == 2, 0, "xw_plus_b: Input weights array should have rank equal 2, but got instead %i!", w->rankOf());
|
|
REQUIRE_TRUE(z->rankOf() == 2, 0, "xw_plus_b: Output array should have rank equal 2, but got instead %i!", z->rankOf());
|
|
|
|
REQUIRE_TRUE(1 == b->rankOf() && b->lengthOf() == z->sizeAt(-1), 0, "xw_plus_b: Input bias vector should be 1D and have proper dimension 1x%i."
|
|
" But got rank %i, and got length %i instead %i.", z->sizeAt(-1), b->rankOf(), b->lengthOf(), z->sizeAt(-1));
|
|
|
|
// multiply x to y
|
|
MmulHelper::mmul(x, w, z, 1.0, 0.0);
|
|
|
|
// adding b vector
|
|
z->addiRowVector(*b);
|
|
|
|
if (bTranspose)
|
|
delete w;
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
DECLARE_SHAPE_FN(xw_plus_b) {
|
|
|
|
auto weights = INPUT_VARIABLE(1);
|
|
|
|
const int nWeightsFormat = block.getIArguments()->size() > 0 ? INT_ARG(0) : 0;
|
|
|
|
auto weightsShape = (1 == nWeightsFormat) ? ShapeUtils::evalTranspShapeInfo(*weights, block.getWorkspace()) : inputShape->at(1);
|
|
|
|
auto outputShape = ShapeUtils::matrixProductShape(inputShape->at(0), weightsShape, false, false,
|
|
ArrayOptions::dataType(inputShape->at(0)), block.getWorkspace());
|
|
|
|
return SHAPELIST(outputShape);
|
|
}
|
|
|
|
DECLARE_TYPES(xw_plus_b) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(sd::DataType::ANY)
|
|
->setAllowedOutputTypes({ ALL_FLOATS });
|
|
}
|
|
|
|
|
|
CUSTOM_OP_IMPL(xw_plus_b_bp, 4, 3, false, 0, 0) {
|
|
|
|
auto x = INPUT_VARIABLE(0);
|
|
auto b = INPUT_VARIABLE(2);
|
|
auto dLdz = INPUT_VARIABLE(3);
|
|
|
|
auto dLdx = OUTPUT_VARIABLE(0);
|
|
auto dLdb = OUTPUT_VARIABLE(2);
|
|
|
|
if (x->isEmpty() || INPUT_VARIABLE(1)->isEmpty() || b->isEmpty() || dLdz->isEmpty())
|
|
return Status::OK();
|
|
|
|
const bool bTranspose = (block.getIArguments()->size() > 0 ? INT_ARG(0) == 1 : false);
|
|
|
|
auto w = bTranspose ? new NDArray(INPUT_VARIABLE(1)->transpose()) : INPUT_VARIABLE(1);
|
|
|
|
REQUIRE_TRUE(x->rankOf() == 2, 0, "xw_plus_b BP: Input x array should have rank equal 2, but got instead %i!", x->rankOf());
|
|
REQUIRE_TRUE(w->rankOf() == 2, 0, "xw_plus_b BP: Input weights array should have rank equal 2, but got instead %i!", w->rankOf());
|
|
REQUIRE_TRUE(dLdz->rankOf() == 2, 0, "xw_plus_b BP: Output array should have rank equal 2, but got instead %i!", dLdz->rankOf());
|
|
REQUIRE_TRUE(1 == b->rankOf() && b->lengthOf() == dLdz->sizeAt(-1), 0, "xw_plus_b BP: Input bias vector should be 1D and have proper dimension 1x%i."
|
|
" But got rank %i, and got length %i instead %i.", dLdz->sizeAt(-1), b->rankOf(), b->lengthOf(), dLdz->sizeAt(-1));
|
|
|
|
auto dLdw = (bTranspose) ? new NDArray(OUTPUT_VARIABLE(1)->transpose()) : OUTPUT_VARIABLE(1);
|
|
|
|
// dLdb
|
|
dLdb->assign(dLdz->reduceAlongDimension(reduce::Sum, { 0 }));
|
|
|
|
matmul_bp mmul_bp;
|
|
mmul_bp.execute({ x, w, dLdz }, std::vector<NDArray*>{dLdx, dLdw}, {}, {}, {});
|
|
|
|
if (bTranspose) {
|
|
delete w;
|
|
delete dLdw;
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
DECLARE_SHAPE_FN(xw_plus_b_bp) {
|
|
Nd4jLong* xShapeInfo;
|
|
Nd4jLong* wShapeInfo;
|
|
Nd4jLong* bShapeInfo;
|
|
|
|
COPY_SHAPE(inputShape->at(0), xShapeInfo);
|
|
COPY_SHAPE(inputShape->at(1), wShapeInfo);
|
|
COPY_SHAPE(inputShape->at(2), bShapeInfo);
|
|
return SHAPELIST(CONSTANT(xShapeInfo), CONSTANT(wShapeInfo), CONSTANT(bShapeInfo));
|
|
}
|
|
|
|
DECLARE_TYPES(xw_plus_b_bp) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(sd::DataType::ANY)
|
|
->setAllowedOutputTypes({ ALL_FLOATS });
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|