* Shugeo strided slice zeros (#14) * Modified strided_slice op to properly work with empty-like shapes. * Fixed test for reduce_mean with empty-like input. * [WIP] Last merge (#15) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks * [WIP] Fixing outstanding issues for NLP (#9) * Avoid using not-inited objects * Test fixed. * Redundant method avoided for models like FastText * KMeans++ implementation * KMeans++ implementation * Disable parallel execution * KMeans++ * Tests * Dev branch merge (#16) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Fix some issues on master (#17) * Fix DataVec test issue * Fix issue with dl4j SameDiff output layer * Dtype fix for lambda layers * #7912 BertIterator dtype fix (use float32 not global default) * [WIP] Next set of CUDA stuff (#7) New CUDA implementations and improvements * bad file * Dev branch master merge (#23) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * SameDiff ops, TF import and fixes (#24) * CheckNumerics tests + fixes + misc fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fake quant Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * FakeQuantWithMinMaxArgs Signed-off-by: AlexDBlack <blacka101@gmail.com> * CheckNumerics fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Javadoc Signed-off-by: AlexDBlack <blacka101@gmail.com> * Exception tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for out of scope stack allocated var use Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignores Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignore for known failing test (already logged issue) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Merge upstream to fork (#25) * Add thousand-separator commas to TotalParams (#7915) * Add thousand-separator commas to TotalParams The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them. * Add thousand-separator commas to MultiLayerNetwork Corresponding change to MultiLayerNetwork Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com> * Update contributing and issue/PR templates (#7934) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix link to AdaDelta paper (#7942) Fix link to AdaDelta paper hosted on matthewzeiler.com Signed-off-by: Jxtps * Fixes, and ignores for known/logged failing issues (#7943) Signed-off-by: AlexDBlack <blacka101@gmail.com> * SameDiff + DL4J/SameDiff: Multiple fixes (#28) * #7919 HDF5 attribute buffer length fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7909 Arbiter constructor exception ux improvements Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7925 RNN output layer length checks Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Add listener for validating inputs are not incorrectly modified Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Integrate NonInplaceValidationListener into tests * #7844 DL4J SameDiff fixes for variable minibatch size * DL4J SameDiff fixes - ensure gradient for input placeholder is available Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tweaks to ExternalErrorsFunction - use placeholders, make more robust * Another fix * More fixes * More SameDiff/DL4J fixes * Scope out scalar array creation in BaseScalarOp * Remove debug code Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Final dev branch merge (#29) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * [WIP] Multiple dataset iterators (#27) * Splitting dataset into arbitrary number * Fixes * Multiple split of iterator * Test * Test * Some fixes * signature change * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * one more test for sequential use of DataSetIteratorSplitter Signed-off-by: raver119 <raver119@gmail.com> * Fixes * Fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * couple of assertions tweaked Signed-off-by: raver119 <raver119@gmail.com> * MDS splitter test :/ Signed-off-by: raver119 <raver119@gmail.com> * Minor refactoring * Multi dataset * Some fixes * More tests * Small number of test fixes/improvements (failures on CI) (#31) Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] More CUDA stuff (#26) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * LRN BP CUDA Signed-off-by: raver119 <raver119@gmail.com> * less memory Signed-off-by: raver119 <raver119@gmail.com> * Fixed bug with crop_and_resize op helper. * get rid of unnecessary index-calculation dunction Signed-off-by: Yurii <yurii@skymind.io> * Fixed sort with nth_element cuda-based helper. * Refactored nth_element. * Refactored nth_element op and tests. * Modified usage of dim array with sortTad routine. * Refactored main routine of helper for non_max_image_suppression op. * non_max_image_suppression op helper with cuda kernel implementation. Initial revision. * fix vol2col cuda kernel * meh Signed-off-by: raver119 <raver119@gmail.com> * topK concept Signed-off-by: raver119 <raver119@gmail.com> * unsorted topK with scanWitdh of 1 Signed-off-by: raver119 <raver119@gmail.com> * correct vol2col tests * sorted/unsorted topK Signed-off-by: raver119 <raver119@gmail.com> * implementation and fixing col2im/col2vol * Corrected usage flags with input/output with reverse op. * dup is const now Signed-off-by: raver119 <raver119@gmail.com> * percentile op Signed-off-by: raver119 <raver119@gmail.com> * group tests for mapool2d Signed-off-by: Yurii <yurii@skymind.io> * special test for george Signed-off-by: raver119 <raver119@gmail.com> * less threads for sortTad Signed-off-by: raver119 <raver119@gmail.com> * provide conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * remove auther in sort tad kernel code Signed-off-by: Yurii <yurii@skymind.io> * provide depthwise_conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * - max_pooling_with_argmax - null check for special use Signed-off-by: raver119 <raver119@gmail.com> * dts cuda Signed-off-by: raver119 <raver119@gmail.com> * provide sconv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * std cuda Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op to conform TF implementation. * Improved suppression helper. * provide pooling3d for cuda Signed-off-by: Yurii <yurii@skymind.io> * minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * more of minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * (bi)dynamic_rnn Signed-off-by: raver119 <raver119@gmail.com> * templates init order Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op. * Added cuda kernel for non_max_suppression. * CPU sort by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value tests Signed-off-by: raver119 <raver119@gmail.com> * Eliminate compiler error with cuda implementation. * - repaired gradCheck in cuda - provide conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * missed signature Signed-off-by: raver119 <raver119@gmail.com> * provide depthwise_conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * Implementation of lup helper with cuda kernel. Initial commit. * further work on backprops for convolutions Signed-off-by: Yurii <yurii@skymind.io> * CUDA linear sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * CUDA tad sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * start providing of backprop for pooling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * Added atomicAdd for bool datatype. * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition scalar CUDA Signed-off-by: raver119 <raver119@gmail.com> * important comment Signed-off-by: raver119 <raver119@gmail.com> * fix pooling2d/3d backprop helpers Signed-off-by: Yurii <yurii@skymind.io> * Added non-linear test with dynamic_partition. * Improved test for dynamic_partition. * dynamic_partition TAD concept Signed-off-by: raver119 <raver119@gmail.com> * - dynamic_partition TAD CUDA impl - dynamic_partition TAD CPU fix Signed-off-by: raver119 <raver119@gmail.com> * - rewrite cpu code for usampling2d/3d - write cuda code for usampling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * dynamic_stitch CUDA vector case Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case impl Signed-off-by: raver119 <raver119@gmail.com> * Added tests for dynamic_stitch 3D-4D cases. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * Fixed type check for dynamic stitch. * min/max bp Signed-off-by: raver119 <raver119@gmail.com> * rewrite code for upsampling2d/3d cpu Signed-off-by: Yurii <yurii@skymind.io> * reduce min/max/norm_max bp Signed-off-by: raver119 <raver119@gmail.com> * lup implementation. Additional enhancements. * provide code for upsamling2d/3d backprop Signed-off-by: Yurii <yurii@skymind.io> * weightedCrossEntropyWithLogits Signed-off-by: raver119 <raver119@gmail.com> * Fixed template math atomicMul for 64bit ints. * Refactored dynamic_partition_bp op. * inverseBroadcast fix Signed-off-by: raver119 <raver119@gmail.com> * DynamicPartitionBP test datatype fixed. * - nd4j_atomicMul Windows fix - cpu/NDArrayLambda.hpp excluded from CUDA Signed-off-by: raver119 <raver119@gmail.com>
1052 lines
47 KiB
C++
1052 lines
47 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author GS <sgazeos@gmail.com>
|
|
//
|
|
|
|
#include <ops/declarable/helpers/segment.h>
|
|
#include <ShapeUtils.h>
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
// segment max
|
|
template <typename T>
|
|
static void segmentMaxFunctor_(NDArray* input, NDArray* indices, NDArray* output) {
|
|
//int numClasses = output->sizeAt(0);
|
|
// if input is a vector: (as if in doc sample)
|
|
Nd4jLong idx = indices->e<Nd4jLong>(0);
|
|
if (input->isVector()) {
|
|
T val = input->e<T>(0);
|
|
|
|
for (Nd4jLong e = 1; e < indices->lengthOf(); e++) {
|
|
if (idx == indices->e<Nd4jLong>(e)) {
|
|
// max
|
|
val = nd4j::math::nd4j_max<T>(val, input->t<T>(e));
|
|
}
|
|
else {
|
|
idx = indices->e<Nd4jLong>(e);
|
|
val = input->t<T>(e);
|
|
}
|
|
output->t<T>(idx) = val;
|
|
}
|
|
}
|
|
else {
|
|
std::vector<int> restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
auto listOfTensors = input->allTensorsAlongDimension(restDims);
|
|
auto listOfOutTensors = output->allTensorsAlongDimension(restDims);
|
|
|
|
auto numOfClasses = output->sizeAt(0); // number of classes
|
|
std::vector<std::pair<NDArray*, int>> outputs(numOfClasses);
|
|
auto maxT = listOfOutTensors->at(idx);
|
|
|
|
//int pos = 0;
|
|
maxT->assign(listOfTensors->at(0));
|
|
|
|
for (Nd4jLong i = 1; i < indices->lengthOf(); i++) {
|
|
if (indices->e<int>(i) == idx) {
|
|
|
|
for (Nd4jLong e = 0; e < maxT->lengthOf(); e++) {
|
|
maxT->t<T>(e) = nd4j::math::nd4j_max(maxT->t<T>(e), listOfTensors->at(i)->t<T>(e));
|
|
}
|
|
}
|
|
else {
|
|
idx = indices->e<Nd4jLong>(i);
|
|
maxT = listOfOutTensors->at(idx);
|
|
maxT->assign(listOfTensors->at(i));
|
|
}
|
|
|
|
}
|
|
delete listOfTensors;
|
|
delete listOfOutTensors;
|
|
}
|
|
}
|
|
|
|
// segmen min
|
|
template <typename T>
|
|
static void segmentMinFunctor_(NDArray* input, NDArray* indices, NDArray* output) {
|
|
//int numClasses = output->sizeAt(0);
|
|
// if input is a vector: (as if in doc sample)
|
|
Nd4jLong idx = indices->e<Nd4jLong>(0);
|
|
if (input->isVector()) {
|
|
T val = input->e<T>(0);
|
|
|
|
for (int e = 1; e < indices->lengthOf(); e++) {
|
|
if (idx == indices->e<Nd4jLong>(e)) {
|
|
// min
|
|
val = nd4j::math::nd4j_min<T>(val, input->t<T>(e));
|
|
}
|
|
else {
|
|
idx = indices->e<int>(e);
|
|
val = input->t<T>(e);
|
|
}
|
|
output->t<T>(idx) = val;
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
std::unique_ptr<ResultSet> listOfTensors( input->allTensorsAlongDimension(restDims) );
|
|
std::unique_ptr<ResultSet> listOfOutTensors( output->allTensorsAlongDimension(restDims) );
|
|
|
|
int numOfClasses = output->sizeAt(0); // number of classes
|
|
std::vector<std::pair<NDArray*, int>> outputs(numOfClasses);
|
|
auto minT = listOfOutTensors->at(idx);
|
|
|
|
int pos = 0;
|
|
minT->assign(listOfTensors->at(0));
|
|
|
|
for (Nd4jLong i = 1; i < indices->lengthOf(); i++) {
|
|
if (indices->e<T>(i) == idx) {
|
|
|
|
for (int e = 0; e < minT->lengthOf(); e++) {
|
|
minT->p(e, nd4j::math::nd4j_min(minT->e<T>(e), listOfTensors->at(i)->e<T>(e)));
|
|
}
|
|
}
|
|
else {
|
|
idx = indices->e<T>(i);
|
|
minT = listOfOutTensors->at(idx);
|
|
minT->assign(listOfTensors->at(i));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// segmen mean
|
|
template <typename T>
|
|
static void segmentMeanFunctor_(NDArray* input, NDArray* indices, NDArray* output) {
|
|
int numClasses = output->sizeAt(0);
|
|
// if input is a vector: (as if in doc sample)
|
|
int idx = indices->e<int>(0);
|
|
if (input->isVector()) {
|
|
T val = T(0.f);
|
|
int count = 0;
|
|
|
|
for (int e = 0; e < indices->lengthOf(); e++) {
|
|
if (idx == indices->e<int>(e)) {
|
|
// mean
|
|
val += input->e<T>(e);
|
|
count++;
|
|
}
|
|
else {
|
|
output->p<T>(idx, val / count);
|
|
idx = indices->e<int>(e);
|
|
val = input->e<T>(e);
|
|
count = 1;
|
|
}
|
|
output->p<T>(idx, val / count);
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
auto listOfTensors = input->allTensorsAlongDimension(restDims);
|
|
auto listOfOutTensors = output->allTensorsAlongDimension(restDims);
|
|
|
|
int numOfClasses = output->sizeAt(0); // number of classes
|
|
std::vector<std::pair<NDArray*, int>> outputs(numOfClasses);
|
|
auto meanT = listOfOutTensors->at(idx);
|
|
int count = 1;
|
|
auto meanV = meanT->dup();
|
|
meanV->assign(listOfTensors->at(0));
|
|
|
|
for (int i = 1; i < indices->lengthOf(); i++) {
|
|
if (indices->e<int>(i) == idx) {
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (int e = 0; e < meanT->lengthOf(); e++) {
|
|
meanV->p<T>(e, meanV->e<T>(e) + listOfTensors->at(i)->e<T>(e));
|
|
}
|
|
count++;
|
|
}
|
|
else {
|
|
//meanT->assign(meanV);
|
|
meanV->applyScalar(scalar::Divide, count, meanT, nullptr);
|
|
idx = indices->e<int>(i);
|
|
meanT = listOfOutTensors->at(idx);
|
|
meanV->assign(listOfTensors->at(i));
|
|
count = 1;
|
|
}
|
|
meanV->applyScalar(scalar::Divide, count, meanT, nullptr);
|
|
}
|
|
delete meanV;
|
|
delete listOfTensors;
|
|
delete listOfOutTensors;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static void segmentSumFunctor_(NDArray* input, NDArray* indices, NDArray* output) {
|
|
int numClasses = output->sizeAt(0);
|
|
// if input is a vector: (as if in doc sample)
|
|
int idx = indices->e<int>(0);
|
|
if (input->isVector()) {
|
|
T val = T(0.f);
|
|
int count = 0;
|
|
for (int e = 0; e < indices->lengthOf(); e++) {
|
|
if (idx == indices->e<int>(e)) {
|
|
// sum
|
|
val += input->t<T>(e);
|
|
}
|
|
else {
|
|
idx = indices->e<int>(e);
|
|
val = input->t<T>(e);
|
|
}
|
|
output->p(idx, val);
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
auto listOfTensors = input->allTensorsAlongDimension(restDims);
|
|
auto listOfOutTensors = output->allTensorsAlongDimension(restDims);
|
|
|
|
int numOfClasses = output->sizeAt(0); // number of classes
|
|
std::vector<std::pair<NDArray*, int>> outputs(numOfClasses);
|
|
auto sumT = listOfOutTensors->at(idx);
|
|
|
|
for (int i = 0; i < indices->lengthOf(); i++) {
|
|
if (indices->e<int>(i) == idx) {
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (int e = 0; e < sumT->lengthOf(); e++) {
|
|
sumT->p(e, sumT->e<T>(e) + listOfTensors->at(i)->e<T>(e));
|
|
}
|
|
}
|
|
else {
|
|
idx = indices->e<int>(i);
|
|
sumT = listOfOutTensors->at(idx);
|
|
sumT->assign(listOfTensors->at(i));
|
|
}
|
|
}
|
|
delete listOfTensors;
|
|
delete listOfOutTensors;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static void segmentProdFunctor_(NDArray* input, NDArray* indices, NDArray* output) {
|
|
//int numClasses = output->sizeAt(0);
|
|
// if input is a vector: (as if in doc sample)
|
|
int idx = indices->e<int>(0);
|
|
output->assign(1.f);
|
|
if (input->isVector()) {
|
|
T val = input->e<T>(0);
|
|
int count = 0;
|
|
|
|
for (int e = 1; e < indices->lengthOf(); e++) {
|
|
if (idx == indices->e<int>(e)) {
|
|
// sum
|
|
val *= input->e<T>(e);
|
|
}
|
|
else {
|
|
idx = indices->e<int>(e);
|
|
val = input->e<T>(e);
|
|
}
|
|
output->p(idx, val);
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
auto listOfTensors = input->allTensorsAlongDimension(restDims);
|
|
auto listOfOutTensors = output->allTensorsAlongDimension(restDims);
|
|
|
|
int numOfClasses = output->sizeAt(0); // number of classes
|
|
auto sumT = listOfOutTensors->at(idx);
|
|
sumT->assign(listOfTensors->at(0));
|
|
for (int i = 1; i < indices->lengthOf(); i++) {
|
|
if (indices->e<int>(i) == idx) {
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (int e = 0; e < sumT->lengthOf(); e++) {
|
|
sumT->p(e, sumT->e<T>(e) * listOfTensors->at(i)->e<T>(e));
|
|
}
|
|
}
|
|
else {
|
|
idx = indices->e<int>(i);
|
|
sumT = listOfOutTensors->at(idx);
|
|
sumT->assign(listOfTensors->at(i));
|
|
}
|
|
}
|
|
delete listOfTensors;
|
|
delete listOfOutTensors;
|
|
}
|
|
}
|
|
|
|
// template <typename T>
|
|
// static bool segmentIndicesValidate_(NDArray* indices, NDArray& aexpected, NDArray& anOutput) {
|
|
// }
|
|
|
|
void segmentMaxFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), segmentMaxFunctor_, (input, indices, output), LIBND4J_TYPES);
|
|
}
|
|
|
|
void segmentMinFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), segmentMinFunctor_, (input, indices, output), LIBND4J_TYPES);
|
|
}
|
|
|
|
void segmentMeanFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), segmentMeanFunctor_, (input, indices, output), LIBND4J_TYPES);
|
|
}
|
|
|
|
void segmentSumFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), segmentSumFunctor_, (input, indices, output), LIBND4J_TYPES);
|
|
}
|
|
|
|
void segmentProdFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), segmentProdFunctor_, (input, indices, output), LIBND4J_TYPES);
|
|
}
|
|
|
|
bool segmentIndicesValidate(nd4j::LaunchContext * context, NDArray* indices, NDArray& expected, NDArray& output) {
|
|
auto val = indices->e(0);
|
|
for (int e = 1; e < indices->lengthOf(); e++) {
|
|
output = indices->e(e);
|
|
if (val.e<Nd4jLong>(0) > output.e<Nd4jLong>(0))
|
|
return false;
|
|
val = indices->e(e);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//BUILD_SINGLE_TEMPLATE(template bool segmentIndicesValidate_, (NDArray*, NDArray&, NDArray&), LIBND4J_TYPES);
|
|
BUILD_SINGLE_TEMPLATE(template void segmentProdFunctor_, (NDArray* input, NDArray* indices, NDArray* output), LIBND4J_TYPES);
|
|
BUILD_SINGLE_TEMPLATE(template void segmentSumFunctor_, (NDArray* input, NDArray* indices, NDArray* output), LIBND4J_TYPES);
|
|
BUILD_SINGLE_TEMPLATE(template void segmentMeanFunctor_, (NDArray* input, NDArray* indices, NDArray* output), LIBND4J_TYPES);
|
|
BUILD_SINGLE_TEMPLATE(template void segmentMinFunctor_, (NDArray* input, NDArray* indices, NDArray* output), LIBND4J_TYPES);
|
|
BUILD_SINGLE_TEMPLATE(template void segmentMaxFunctor_, (NDArray* input, NDArray* indices, NDArray* output), LIBND4J_TYPES);
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
// Unsorted segment ops
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
|
|
bool unsortedSegmentIndicesValidate(nd4j::LaunchContext * context, NDArray* indices, Nd4jLong expected, Nd4jLong& output) {
|
|
Nd4jLong val = indices->e<Nd4jLong>(0);
|
|
|
|
Nd4jLong maxInd = indices->argMax();
|
|
if (indices->e<Nd4jLong>(maxInd) >= expected) {
|
|
output = val;
|
|
return false;
|
|
}
|
|
output = expected;
|
|
return true;
|
|
}
|
|
|
|
template <typename T>
|
|
static void unsortedSegmentMaxFunctor_(NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
|
|
|
// if input is a vector: (as if in doc sample)
|
|
//int idx = static_cast<int>((*indices)(0.));
|
|
std::map<Nd4jLong, std::vector<Nd4jLong>> idxs;//(indices->lengthOf());
|
|
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e)
|
|
idxs[indices->e<Nd4jLong>(e)].push_back(e);
|
|
|
|
//std::sort(idxs.begin(), idxs.end());
|
|
|
|
if (input->isVector()) { // 1D case
|
|
T maxVal = DataTypeUtils::max<T>();
|
|
output->assign(-maxVal);
|
|
|
|
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
|
|
T val = input->e<T>(fi->second.at(0));
|
|
for (Nd4jLong idx = 1; idx < fi->second.size(); ++idx) {
|
|
val = nd4j::math::nd4j_max(val, input->e<T>(fi->second.at(idx)));
|
|
}
|
|
output->p(fi->first, val);
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
std::unique_ptr<ResultSet> listOfTensors(input->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension(restDims));
|
|
|
|
T maxVal = DataTypeUtils::max<T>();
|
|
output->assign(-maxVal);
|
|
|
|
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
|
|
auto outputT = listOfOutTensors->at(fi->first);
|
|
outputT->assign(listOfTensors->at(fi->second.at(0)));
|
|
for (Nd4jLong idx = 1; idx < fi->second.size(); ++idx) {
|
|
auto maxT = listOfTensors->at(fi->second.at(idx));
|
|
for (Nd4jLong e = 0; e < outputT->lengthOf(); ++e) {
|
|
T val = nd4j::math::nd4j_max(maxT->e<T>(e), outputT->e<T>(e));
|
|
|
|
outputT->p(e, val);
|
|
}
|
|
}
|
|
//outputT->assign(maxT);
|
|
}
|
|
}
|
|
}
|
|
void unsortedSegmentMaxFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), unsortedSegmentMaxFunctor_, (input, indices, numOfClasses, output), NUMERIC_TYPES);
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template void unsortedSegmentMaxFunctor_, (NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES);
|
|
|
|
template <typename T>
|
|
static void unsortedSegmentMinFunctor_(NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
|
// if input is a vector: (as if in doc sample)
|
|
//int idx = static_cast<int>((*indices)(0.));
|
|
std::map<Nd4jLong, std::vector<Nd4jLong>> idxs;//(indices->lengthOf());
|
|
|
|
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e)
|
|
idxs[indices->e<Nd4jLong>(e)].push_back(e);
|
|
|
|
//std::sort(idxs.begin(), idxs.end());
|
|
|
|
if (input->isVector()) { // 1D case
|
|
T maxVal = DataTypeUtils::max<T>();
|
|
output->assign(maxVal);
|
|
|
|
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
|
|
T val = input->t<T>(fi->second.at(0));
|
|
|
|
for (size_t idx = 1; idx < fi->second.size(); ++idx) {
|
|
val = nd4j::math::nd4j_min(val, input->t<T>(fi->second.at(idx)));
|
|
}
|
|
output->t<T>(fi->first) = val;
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
std::unique_ptr<ResultSet> listOfTensors(input->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension(restDims));
|
|
|
|
T maxVal = DataTypeUtils::max<T>();
|
|
output->assign(maxVal);
|
|
|
|
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
|
|
auto outputT = listOfOutTensors->at(fi->first);
|
|
outputT->assign(listOfTensors->at(fi->second.at(0)));
|
|
for (Nd4jLong idx = 1; idx < fi->second.size(); ++idx) {
|
|
auto minT = listOfTensors->at(fi->second.at(idx));
|
|
|
|
for (Nd4jLong e = 0; e < outputT->lengthOf(); ++e) {
|
|
outputT->t<T>(e) = nd4j::math::nd4j_min(minT->t<T>(e), outputT->t<T>(e));
|
|
}
|
|
}
|
|
//outputT->assign(maxT);
|
|
}
|
|
}
|
|
|
|
}
|
|
void unsortedSegmentMinFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), unsortedSegmentMinFunctor_, (input, indices, numOfClasses, output),
|
|
NUMERIC_TYPES);
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void unsortedSegmentMinFunctor_, (NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES);
|
|
|
|
void unsortedSegmentMeanFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
|
std::map<Nd4jLong, std::vector<Nd4jLong>> idxs;//(indices->lengthOf());
|
|
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e)
|
|
idxs[indices->e<Nd4jLong>(e)].push_back(e);
|
|
|
|
//std::sort(idxs.begin(), idxs.end());
|
|
|
|
if (input->isVector()) { // 1D case
|
|
|
|
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
|
|
double sumValue = input->e<double>(fi->second.at(0));
|
|
int loop_size = fi->second.size();
|
|
PRAGMA_OMP_PARALLEL_FOR_SIMD_REDUCTION(+:sumValue)
|
|
for (size_t idx = 1; idx < loop_size; ++idx) {
|
|
sumValue += input->e<double>(fi->second.at(idx));
|
|
}
|
|
|
|
output->p(fi->first, sumValue / fi->second.size());
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
std::unique_ptr<ResultSet> listOfTensors(input->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension(restDims));
|
|
|
|
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
|
|
auto outputT = listOfOutTensors->at(fi->first);
|
|
outputT->assign(listOfTensors->at(fi->second.at(0)));
|
|
auto loopSize = fi->second.size();
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (Nd4jLong idx = 1; idx < loopSize; ++idx) {
|
|
auto current = listOfTensors->at(fi->second.at(idx));
|
|
*outputT += *current;
|
|
}
|
|
(*outputT) /= double(fi->second.size());
|
|
}
|
|
}
|
|
}
|
|
|
|
void unsortedSegmentSumFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
|
std::map<Nd4jLong, std::vector<Nd4jLong>> idxs;//(indices->lengthOf());
|
|
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e)
|
|
idxs[indices->e<Nd4jLong>(e)].push_back(e);
|
|
|
|
if (input->isVector()) { // 1D case
|
|
|
|
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
|
|
double sumValue = input->e<double>(fi->second.at(0));
|
|
Nd4jLong loop_size = fi->second.size();
|
|
PRAGMA_OMP_PARALLEL_FOR_REDUCTION(+:sumValue)
|
|
for (Nd4jLong idx = 1; idx < loop_size; ++idx) {
|
|
sumValue += input->e<double>(fi->second.at(idx));
|
|
}
|
|
output->p(fi->first, sumValue);
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
std::unique_ptr<ResultSet> listOfTensors(input->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension(restDims));
|
|
|
|
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
|
|
auto outputT = listOfOutTensors->at(fi->first);
|
|
outputT->assign(listOfTensors->at(fi->second.at(0)));
|
|
Nd4jLong loop_size = fi->second.size();
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (Nd4jLong idx = 1; idx < loop_size; ++idx) {
|
|
auto current = listOfTensors->at(fi->second.at(idx));
|
|
*(outputT) += *current;
|
|
}
|
|
//outputT->assign(maxT);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void unsortedSegmentProdFunctor_(NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
|
std::map<Nd4jLong, std::vector<Nd4jLong>> idxs;//(indices->lengthOf());
|
|
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e)
|
|
idxs[indices->e<Nd4jLong>(e)].push_back(e);
|
|
|
|
//std::sort(idxs.begin(), idxs.end());
|
|
|
|
output->assign(1.f);
|
|
|
|
if (input->isVector()) { // 1D case
|
|
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
|
|
T prodValue = input->e<T>(fi->second.at(0));
|
|
for (size_t idx = 1; idx < fi->second.size(); ++idx) {
|
|
prodValue *= input->e<T>(fi->second.at(idx));
|
|
}
|
|
output->p(fi->first, prodValue);
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
std::unique_ptr<ResultSet> listOfTensors(input->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension(restDims));
|
|
|
|
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
|
|
auto outputT = listOfOutTensors->at(fi->first);
|
|
outputT->assign(listOfTensors->at(fi->second.at(0)));
|
|
for (Nd4jLong idx = 1; idx < fi->second.size(); ++idx) {
|
|
auto current = listOfTensors->at(fi->second.at(idx));
|
|
|
|
*outputT *= *current;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void unsortedSegmentProdFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), unsortedSegmentProdFunctor_, (input, indices, numOfClasses, output), NUMERIC_TYPES);
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template void unsortedSegmentProdFunctor_, (NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES);
|
|
|
|
void unsortedSegmentSqrtNFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
|
std::map<Nd4jLong, std::vector<Nd4jLong>> idxs;//(indices->lengthOf());
|
|
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e)
|
|
idxs[indices->e<Nd4jLong>(e)].push_back(e);
|
|
|
|
//std::sort(idxs.begin(), idxs.end());
|
|
|
|
if (input->isVector()) { // 1D case
|
|
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
|
|
double sumValue = input->e<double>(fi->second.at(0));
|
|
for (Nd4jLong idx = 1; idx < fi->second.size(); ++idx) {
|
|
sumValue += input->e<double>(fi->second.at(idx));
|
|
}
|
|
output->p(fi->first, sumValue / nd4j::math::nd4j_sqrt<Nd4jLong, double>(fi->second.size()));
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
std::unique_ptr<ResultSet> listOfTensors(input->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension(restDims));
|
|
|
|
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
|
|
auto outputT = listOfOutTensors->at(fi->first);
|
|
outputT->assign(listOfTensors->at(fi->second.at(0)));
|
|
for (Nd4jLong idx = 1; idx < fi->second.size(); ++idx) {
|
|
auto current = listOfTensors->at(fi->second.at(idx));
|
|
*outputT += *current;
|
|
}
|
|
//outputT->assign(maxT);
|
|
(*outputT) /= nd4j::math::nd4j_sqrt<size_t, double>(fi->second.size());
|
|
}
|
|
}
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
// Backpropagate ops helpers
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
// Sorted backpropagate ops
|
|
//
|
|
// segment max
|
|
template <typename T>
|
|
int segmentMaxFunctorBP_(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
|
|
//int numOfClasses = gradOut->sizeAt(0);
|
|
// if input is a vector: (as if in doc sample)
|
|
auto tempRes = gradOut->dup();
|
|
segmentMaxFunctor_<T>(input, indices, tempRes);
|
|
if (input->isVector()) {
|
|
Nd4jLong loop_size = input->lengthOf();
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (Nd4jLong e = 0; e < loop_size; ++e) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(e);
|
|
if (nd4j::math::nd4j_abs(tempRes->e<T>(classNum) - input->e<T>(e)) <= T(1.e-6))
|
|
output->p(e, gradOut->e<T>(classNum));
|
|
}
|
|
}
|
|
else {
|
|
std::vector<int> restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
std::unique_ptr<ResultSet> listOfBPTensors(tempRes->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfGradOuts(gradOut->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfTensors(input->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension(restDims));
|
|
|
|
//int numOfClasses = tempRes->sizeAt(0); // number of classes
|
|
//std::vector<std::pair<NDArray*, int>> outputs(numOfClasses);
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (Nd4jLong i = 0; i < indices->lengthOf(); i++) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(i);
|
|
NDArray* current = listOfTensors->at(i);
|
|
NDArray* currentOut = listOfOutTensors->at(i);
|
|
NDArray* currentGradOut = listOfGradOuts->at(classNum);
|
|
|
|
for (Nd4jLong e = 0; e < current->lengthOf(); e++) {
|
|
if (nd4j::math::nd4j_abs(listOfBPTensors->at(classNum)->e<T>(e) - current->e<T>(e)) <= T(1.e-6))
|
|
currentOut->p(e, currentGradOut->e<T>(e));
|
|
}
|
|
}
|
|
}
|
|
delete tempRes;
|
|
return ND4J_STATUS_OK;
|
|
}
|
|
|
|
int segmentMaxFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(output->dataType(), return segmentMaxFunctorBP_, (context, input, indices, gradOut, output), NUMERIC_TYPES);
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template int segmentMaxFunctorBP_, (nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output), NUMERIC_TYPES);
|
|
|
|
// segmen min
|
|
int segmentMinFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
|
|
std::unique_ptr<NDArray> tempRes(gradOut->dup());
|
|
segmentMinFunctor(context, input, indices, tempRes.get());
|
|
if (input->isVector()) {
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (Nd4jLong e = 0; e < input->lengthOf(); ++e) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(e);
|
|
if (nd4j::math::nd4j_abs(tempRes->e<double>(classNum) - input->e<double>(e)) < 1.e-5)
|
|
output->p(e, gradOut->e<double>(classNum));
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
std::unique_ptr<ResultSet> listOfBPTensors(tempRes->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfGradOuts(gradOut->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfTensors(input->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension(restDims));
|
|
|
|
//int numOfClasses = tempRes->sizeAt(0); // number of classes
|
|
//std::vector<std::pair<NDArray*, int>> outputs(numOfClasses);
|
|
output->assign(0.);
|
|
int pos = 0;
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (int i = 0; i < indices->lengthOf(); i++) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(i);
|
|
NDArray* current = listOfTensors->at(i);
|
|
NDArray* currentOut = listOfOutTensors->at(i);
|
|
NDArray* currentGradOut = listOfGradOuts->at(classNum);
|
|
for (int e = 0; e < current->lengthOf(); e++) {
|
|
if (nd4j::math::nd4j_abs(listOfBPTensors->at(classNum)->e<double>(e) - current->e<double>(e)) < 1.e-5)
|
|
currentOut->p(e, currentGradOut->e<double>(e));
|
|
}
|
|
}
|
|
}
|
|
return ND4J_STATUS_OK;
|
|
}
|
|
|
|
// segmen mean
|
|
int segmentMeanFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
|
|
int numClasses = output->sizeAt(0);
|
|
std::map<Nd4jLong, Nd4jLong> classCount;//(numClasses);
|
|
|
|
for (Nd4jLong count = 0; count < numClasses; ++count) {
|
|
classCount[count] = 0;
|
|
}
|
|
|
|
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e) {
|
|
classCount[indices->e<Nd4jLong>(e)] ++;
|
|
}
|
|
|
|
// if input is a vector: (as if in doc sample)
|
|
if (input->isVector()) {
|
|
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(e);
|
|
output->p(e, gradOut->e<double>(classNum) / classCount[classNum]);
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
std::unique_ptr<ResultSet> listOfGradOuts(gradOut->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfTensors(input->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension(restDims));
|
|
|
|
//int numOfClasses = tempRes->sizeAt(0); // number of classes
|
|
//std::vector<std::pair<NDArray*, int>> outputs(numOfClasses);
|
|
|
|
int pos = 0;
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (int i = 0; i < indices->lengthOf(); i++) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(i);
|
|
NDArray* current = listOfTensors->at(i);
|
|
NDArray* currentOut = listOfOutTensors->at(i);
|
|
NDArray* currentGradOut = listOfGradOuts->at(classNum);
|
|
|
|
for (int e = 0; e < current->lengthOf(); e++) {
|
|
currentOut->p(e, currentGradOut->e<double>(e) / classCount[classNum]);
|
|
}
|
|
}
|
|
}
|
|
return ND4J_STATUS_OK;
|
|
}
|
|
|
|
int segmentSumFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
|
|
// int numClasses = output->sizeAt(0);
|
|
// if input is a vector: (as if in doc sample)
|
|
Nd4jLong idx = indices->e<Nd4jLong>(0);
|
|
if (input->isVector()) {
|
|
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(e);
|
|
output->p(e, gradOut->e<double>(classNum));
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
std::unique_ptr<ResultSet> listOfGradOuts(gradOut->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfTensors(input->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension(restDims));
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (int i = 0; i < indices->lengthOf(); i++) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(i);
|
|
NDArray* current = listOfTensors->at(i);
|
|
NDArray* currentOut = listOfOutTensors->at(i);
|
|
NDArray* currentGradOut = listOfGradOuts->at(classNum);
|
|
currentOut->assign(currentGradOut);
|
|
}
|
|
}
|
|
return ND4J_STATUS_OK;
|
|
}
|
|
|
|
int segmentProdFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
|
|
auto tempRes = gradOut->dup();
|
|
segmentProdFunctor(context, input, indices, tempRes);
|
|
if (input->isVector()) {
|
|
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(e);
|
|
output->p(e, gradOut->e<double>(classNum) * tempRes->e<double>(classNum)/ input->e<double>(e));
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
std::unique_ptr<ResultSet> listOfBPTensors(tempRes->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfGradOuts(gradOut->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfTensors(input->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension(restDims));
|
|
|
|
//int numOfClasses = tempRes->sizeAt(0); // number of classes
|
|
//std::vector<std::pair<NDArray*, int>> outputs(numOfClasses);
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (int i = 0; i < indices->lengthOf(); i++) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(i);
|
|
NDArray* current = listOfTensors->at(i);
|
|
NDArray* currentOut = listOfOutTensors->at(i);
|
|
NDArray* currentGradOut = listOfGradOuts->at(classNum);
|
|
NDArray* currentFFOut = listOfBPTensors->at(classNum);
|
|
|
|
currentOut->assign((*currentFFOut) * (*currentGradOut) / (*current));
|
|
}
|
|
}
|
|
delete tempRes;
|
|
return ND4J_STATUS_OK;
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
// Unsorted backpropagate segment ops
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
|
|
template <typename T>
|
|
static int unsortedSegmentMaxFunctorBP_(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
|
// int numOfClasses = gradOut->sizeAt(0);
|
|
// if input is a vector: (as if in doc sample)
|
|
auto tempRes = gradOut->dup();
|
|
unsortedSegmentMaxFunctor(context, input, indices, numOfClasses, tempRes);
|
|
if (input->isVector()) {
|
|
|
|
for (Nd4jLong e = 0; e < input->lengthOf(); ++e) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(e);
|
|
if (nd4j::math::nd4j_abs(tempRes->e<double>(classNum) - input->e<double>(e)) < 1.e-5)
|
|
output->p(e, gradOut->e<T>(classNum));
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
std::unique_ptr<ResultSet> listOfBPTensors(tempRes->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfGradOuts(gradOut->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfTensors(input->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension(restDims));
|
|
|
|
for (int i = 0; i < indices->lengthOf(); i++) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(i);
|
|
NDArray* current = listOfTensors->at(i);
|
|
NDArray* currentOut = listOfOutTensors->at(i);
|
|
NDArray* currentGradOut = listOfGradOuts->at(classNum);
|
|
for (int e = 0; e < current->lengthOf(); e++) {
|
|
if (nd4j::math::nd4j_abs(listOfBPTensors->at(classNum)->e<double>(e) - current->e<double>(e)) < 1.e-5)
|
|
currentOut->p(e, currentGradOut->e<T>(e));
|
|
}
|
|
}
|
|
}
|
|
delete tempRes;
|
|
return ND4J_STATUS_OK;
|
|
}
|
|
|
|
int unsortedSegmentMaxFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(output->dataType(), return unsortedSegmentMaxFunctorBP_, (context, input, indices, gradOut, numOfClasses, output), NUMERIC_TYPES);
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template int unsortedSegmentMaxFunctorBP_, (nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES);
|
|
|
|
template <typename T>
|
|
static int unsortedSegmentMinFunctorBP_(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
|
auto tempRes = gradOut->dup();
|
|
unsortedSegmentMinFunctor(context, input, indices, numOfClasses, tempRes);
|
|
if (input->isVector()) {
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (Nd4jLong e = 0; e < input->lengthOf(); ++e) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(e);
|
|
if (nd4j::math::nd4j_abs(tempRes->t<T>(classNum) - input->t<T>(e)) < 1.e-6)
|
|
output->t<T>(e) = gradOut->t<T>(classNum);
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
std::unique_ptr<ResultSet> listOfBPTensors(tempRes->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfGradOuts(gradOut->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfTensors(input->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension(restDims));
|
|
|
|
//int numOfClasses = tempRes->sizeAt(0); // number of classes
|
|
//std::vector<std::pair<NDArray*, int>> outputs(numOfClasses);
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (int i = 0; i < indices->lengthOf(); i++) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(i);
|
|
NDArray* current = listOfTensors->at(i);
|
|
NDArray* currentOut = listOfOutTensors->at(i);
|
|
NDArray* currentGradOut = listOfGradOuts->at(classNum);
|
|
|
|
for (int e = 0; e < current->lengthOf(); e++) {
|
|
if (nd4j::math::nd4j_abs(listOfBPTensors->at(classNum)->t<T>(e) - current->t<T>(e)) < 1.e-6)
|
|
currentOut->t<T>(e) = currentGradOut->t<T>(e);
|
|
}
|
|
}
|
|
}
|
|
delete tempRes;
|
|
return ND4J_STATUS_OK;
|
|
}
|
|
|
|
int unsortedSegmentMinFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(output->dataType(), return unsortedSegmentMinFunctorBP_, (context, input, indices, gradOut, numOfClasses, output), NUMERIC_TYPES);
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template int unsortedSegmentMinFunctorBP_, (nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES);
|
|
|
|
int unsortedSegmentMeanFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
|
|
|
std::map<Nd4jLong, Nd4jLong> classCount;//(numClasses);
|
|
|
|
for (Nd4jLong count = 0; count < numOfClasses; ++count) {
|
|
classCount[count] = 0;
|
|
}
|
|
|
|
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e) {
|
|
classCount[indices->e<Nd4jLong>(e)]++;
|
|
}
|
|
|
|
// if input is a vector: (as if in doc sample)
|
|
if (input->isVector()) {
|
|
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(e);
|
|
output->p(e, gradOut->e<double>(classNum) / classCount[classNum]);
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
std::unique_ptr<ResultSet> listOfGradOuts(gradOut->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfTensors(input->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension(restDims));
|
|
|
|
for (int i = 0; i < indices->lengthOf(); i++) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(i);
|
|
NDArray* current = listOfTensors->at(i);
|
|
NDArray* currentOut = listOfOutTensors->at(i);
|
|
NDArray* currentGradOut = listOfGradOuts->at(classNum);
|
|
currentOut->assign(*currentGradOut / double(classCount[classNum]));
|
|
}
|
|
}
|
|
return ND4J_STATUS_OK;
|
|
}
|
|
|
|
int unsortedSegmentSumFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
|
|
|
// if input is a vector: (as if in doc sample)
|
|
Nd4jLong idx = indices->e<Nd4jLong>(0);
|
|
if (input->isVector()) {
|
|
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(e);
|
|
output->p(e, gradOut->e<double>(classNum));
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
std::unique_ptr<ResultSet> listOfGradOuts(gradOut->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfTensors(input->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension(restDims));
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (int i = 0; i < indices->lengthOf(); i++) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(i);
|
|
//NDArray* current = listOfTensors->at(i);
|
|
NDArray* currentOut = listOfOutTensors->at(i);
|
|
NDArray* currentGradOut = listOfGradOuts->at(classNum);
|
|
|
|
currentOut->assign(currentGradOut);
|
|
}
|
|
}
|
|
return ND4J_STATUS_OK;
|
|
}
|
|
|
|
int unsortedSegmentProdFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
|
auto tempRes = gradOut->dup();
|
|
|
|
unsortedSegmentProdFunctor(context, input, indices, numOfClasses, tempRes);
|
|
if (input->isVector()) {
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(e);
|
|
output->p<double>(e, gradOut->e<double>(classNum) * tempRes->e<double>(classNum)/ input->e<double>(e));
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
std::unique_ptr<ResultSet> listOfBPTensors(tempRes->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfGradOuts(gradOut->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfTensors(input->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension(restDims));
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (int i = 0; i < indices->lengthOf(); i++) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(i);
|
|
NDArray* current = listOfTensors->at(i);
|
|
NDArray* currentOut = listOfOutTensors->at(i);
|
|
NDArray* currentGradOut = listOfGradOuts->at(classNum);
|
|
auto currentFFOut = listOfBPTensors->at(classNum);
|
|
|
|
currentOut->assign((*currentFFOut) * (*currentGradOut) / (*current));
|
|
}
|
|
}
|
|
delete tempRes;
|
|
return ND4J_STATUS_OK;
|
|
}
|
|
|
|
// template <typename T>
|
|
int unsortedSegmentSqrtNFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
|
std::map<Nd4jLong, Nd4jLong> classCount;//(numClasses);
|
|
|
|
for (Nd4jLong count = 0; count < numOfClasses; ++count) {
|
|
classCount[count] = 0;
|
|
}
|
|
|
|
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e) {
|
|
classCount[indices->e<Nd4jLong>(e)]++;
|
|
}
|
|
|
|
// if input is a vector: (as if in doc sample)
|
|
if (input->isVector()) {
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(e);
|
|
output->p(e, gradOut->e<double>(classNum) / nd4j::math::nd4j_sqrt<double,double>(classCount[classNum]));
|
|
}
|
|
}
|
|
else {
|
|
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
|
|
std::unique_ptr<ResultSet> listOfGradOuts(gradOut->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfTensors(input->allTensorsAlongDimension(restDims));
|
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension(restDims));
|
|
|
|
//int numOfClasses = tempRes->sizeAt(0); // number of classes
|
|
//std::vector<std::pair<NDArray*, int>> outputs(numOfClasses);
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (int i = 0; i < indices->lengthOf(); i++) {
|
|
Nd4jLong classNum = indices->e<Nd4jLong>(i);
|
|
NDArray* current = listOfTensors->at(i);
|
|
NDArray* currentOut = listOfOutTensors->at(i);
|
|
NDArray* currentGradOut = listOfGradOuts->at(classNum);
|
|
|
|
for (int e = 0; e < current->lengthOf(); e++) {
|
|
currentOut->p(e, currentGradOut->e<double>(e) / nd4j::math::nd4j_sqrt<double,double>(classCount[classNum]));
|
|
}
|
|
}
|
|
}
|
|
return ND4J_STATUS_OK;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|