Alex Black 1170827c18 Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)

* Modified strided_slice op to properly work with empty-like shapes.

* Fixed test for reduce_mean with empty-like input.

* [WIP] Last merge (#15)

* correct logsoftmax looss (#2)

* Small SameDiff listener fix (#4)

* Various fixes (#6)

* #7839 Fix for asXMatrix and tests

* #7866 EmbeddingSequenceLayer dtype fix + test

* #7856 SameDiff save/load stream methods

* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration

* EvaluationBinary 3d/4d

* More evaluation 3d/4d tests

* #7847 Evaluation empty checks

* Small test ifx

* #7848 Fix median edge case

* Improve DL4J samediff layer tests

* [WIP] FastText wrapper implemented (#8)

* FastText implemented

* Some fixes

* Fix shapes for wordsNearest

* Validation of input vectors

* Fixes

* Fixed test

* Thread tagged

* Some tweaks

* setContextClassLoader for DeallocatorServiceThread

* Numpy format tests (#1)

* Various fixes (#11)

* #7852 SameDiff gather fix

* #7892 SameDiff placeholder to constant conversion

* #7890 validate input rank for MLN/CG init methods

* Fix broken permute shape calculation

* Permute and gather fixes

* Tests

* #7850 LogSumExp fix + test

* Handful of test fixes

* Empty arrays with non-scalar shapes (#10)

* minor rearrangements for lambdas

* empty tensors with non-scalar shapes

* numpy empty tensors with non-scalar shapes

* few more empty tweaks

* Small fixes

* conv3d signature update

* micro fix in batchnorm mkldnn

* Import fixes

* Fix

* MKL-DNN update

* Small fill fix

* fill with empty input + test

* Fixes

* Small error improvement

* Fix

* one special test

* couple of fixes for lstm

* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone

* Fixes

* FP16

* Unsigned

* BFloat16

* Fill op - empty tweaks

* - couple of fixes for empty arrays construction
- stack updated

* strided slice fix

* one transform test

* provide method for reducing shapeInfo in case of input array is empty

* Fixed reduceAlongDimensions to use empty input properly.

* couple of broadcast tests

* couple of tests broadcast tests + tweak to make them pass

* add check of non-empty to methods producing sub-arrays

* Fixed reshapeC with zeros in shape.

* complete empty check in reduce_... legacy ops

* Concat and cumsum/prod

* Tweak to empty shape inference on import

* add empty check to the rest of reduce legacy ops

* one more test

* correct typo in evalReduceShapeInfoEmpty

* Added tests for reduce_* ops to tests with zero shapes.

* few more tests for empty reductions

* Fixed strided_slice op with empty case and tests.

* one more empty reduction test

* Fixed strided_slice test.

* add empty check to NDArray::reshapei

* infOrMax

* empty min/max with infinity tests

* made unstack working correctly with empty arrays

* few IndexReduce tests + tweaks for empty shapes

* add test for empty concat

* few tests fixed

* Validation fix for reductions on empty shapes

* Reverse fix

* Reduction shape calc fixes

* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs

* Range fix

* - NDArray constructor updated for scalars/empty arrays
- few tests fixed

* More fixes

* Empty creator fixes

* concat fix

* concat fix

* TF import tests: allow 'both all NaN' and 'both all inf' to pass

* Slice, zero fraction, and reshape fixes

* transpose, gather

* Zero fraction

* scalar cast fix

* Empty reduction axis support

* few more tests fixed

* Fixed input checks conforming with TF for concat op and tests.

* few tests fixed

* matmul scalar shape fix

* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.

* broadcast bool fix

* few more tests

* few more tests

* correct evalReduceShapeInfoEmpty

* argmax/argmin + tests

* one more empty edge case + one more test

* argmax/argmin/realdiv_bp tweaks

* empty reshape test + fix

* Helper fixes

* Small fixes

* Gather test fix

* Gather test fix

* Small fixes

* reduce scalar zero values

* scalar mean workaround

* Remove debug code

* along dim mean workaround

* one more test

* - equalsTo() tweak for empty arrays
- one more test

* broadcast tweaks

* [WIP] Fixing outstanding issues for NLP (#9)

* Avoid using not-inited objects

* Test fixed.

* Redundant method avoided for models like FastText

* KMeans++ implementation

* KMeans++ implementation

* Disable parallel execution

* KMeans++

* Tests

* Dev branch merge (#16)

* SameDiff: convertDataType and gradient check util improvements (#12)

* GradCheck util improvements

* StopGradient constructor + test

* SameDiff: Add datatype conversion

* Javadoc and add DataType.isNumerical()

* Small fix

* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)

* TFGraphTestAllHelper: check intermediates in execution order

* Add missing debug listener

* [WIP] lstmBlock fix + other changes (#13)

- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite

* Small test fix

* CheckNumerics op wrapper

* Fix some issues on master (#17)

* Fix DataVec test issue

* Fix issue with dl4j SameDiff output layer

* Dtype fix for lambda layers

* #7912 BertIterator dtype fix (use float32 not global default)

* [WIP] Next set of CUDA stuff (#7)

New CUDA implementations and improvements

* bad file

* Dev branch master merge (#23)

* SameDiff: convertDataType and gradient check util improvements (#12)

* GradCheck util improvements

* StopGradient constructor + test

* SameDiff: Add datatype conversion

* Javadoc and add DataType.isNumerical()

* Small fix

* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)

* TFGraphTestAllHelper: check intermediates in execution order

* Add missing debug listener

* [WIP] lstmBlock fix + other changes (#13)

- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite

* Small test fix

* CheckNumerics op wrapper

* Compatibility of deserialization (#18)

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* SameDiff: add activation gradient checking support for debugging (#19)

* SameDiff gradient checker: first pass on activation gradient checks

* Fixes + tests for activation gradient checking

* Javadoc

* [WIP] Some nd4j data type corrections (#20)

* Adjust data type

* Set correct Data type.

* Size of proper data type.

* fix averaged cpu load (#22)

* SameDiff ops, TF import and fixes (#24)

* CheckNumerics tests + fixes + misc fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fake quant

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* FakeQuantWithMinMaxArgs

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* CheckNumerics fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Small fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Javadoc

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Exception tweak

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix for out of scope stack allocated var use

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Ignores

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Ignore for known failing test (already logged issue)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Merge upstream to fork (#25)

* Add thousand-separator commas to TotalParams (#7915)

* Add thousand-separator commas to TotalParams

The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.

* Add thousand-separator commas to MultiLayerNetwork

Corresponding change to MultiLayerNetwork

Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>

* Update contributing and issue/PR templates (#7934)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix link to AdaDelta paper (#7942)

Fix link to AdaDelta paper hosted on matthewzeiler.com

Signed-off-by: Jxtps

* Fixes, and ignores for known/logged failing issues (#7943)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* SameDiff + DL4J/SameDiff: Multiple fixes (#28)

* #7919 HDF5 attribute buffer length fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7909 Arbiter constructor exception ux improvements

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7925 RNN output layer length checks

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7939 Add listener for validating inputs are not incorrectly modified

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7939 Integrate NonInplaceValidationListener into tests

* #7844 DL4J SameDiff fixes for variable minibatch size

* DL4J SameDiff fixes - ensure gradient for input placeholder is available

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Tweaks to ExternalErrorsFunction - use placeholders, make more robust

* Another fix

* More fixes

* More SameDiff/DL4J fixes

* Scope out scalar array creation in BaseScalarOp

* Remove debug code

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] Final dev branch merge (#29)

* SameDiff: convertDataType and gradient check util improvements (#12)

* GradCheck util improvements

* StopGradient constructor + test

* SameDiff: Add datatype conversion

* Javadoc and add DataType.isNumerical()

* Small fix

* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)

* TFGraphTestAllHelper: check intermediates in execution order

* Add missing debug listener

* [WIP] lstmBlock fix + other changes (#13)

- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite

* Small test fix

* CheckNumerics op wrapper

* Compatibility of deserialization (#18)

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* SameDiff: add activation gradient checking support for debugging (#19)

* SameDiff gradient checker: first pass on activation gradient checks

* Fixes + tests for activation gradient checking

* Javadoc

* [WIP] Some nd4j data type corrections (#20)

* Adjust data type

* Set correct Data type.

* Size of proper data type.

* fix averaged cpu load (#22)

* [WIP] Multiple dataset iterators (#27)

* Splitting dataset into arbitrary number

* Fixes

* Multiple split of iterator

* Test

* Test

* Some fixes

* signature change

* one more tweak

Signed-off-by: raver119 <raver119@gmail.com>

* one more test for sequential use of DataSetIteratorSplitter

Signed-off-by: raver119 <raver119@gmail.com>

* Fixes

* Fixes

* one more test for Alexander

Signed-off-by: raver119 <raver119@gmail.com>

* Some fixes

* Some fixes

* one more test for Alexander

Signed-off-by: raver119 <raver119@gmail.com>

* minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* Some fixes

* Some fixes

* couple of assertions tweaked

Signed-off-by: raver119 <raver119@gmail.com>

* MDS splitter test :/

Signed-off-by: raver119 <raver119@gmail.com>

* Minor refactoring

* Multi dataset

* Some fixes

* More tests

* Small number of test fixes/improvements (failures on CI) (#31)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] More CUDA stuff (#26)

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* LRN BP CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* less memory

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed bug with crop_and_resize op helper.

* get rid of unnecessary index-calculation dunction

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed sort with nth_element cuda-based helper.

* Refactored nth_element.

* Refactored nth_element op and tests.

* Modified usage of dim array with sortTad routine.

* Refactored main routine of helper for non_max_image_suppression op.

* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.

* fix vol2col cuda kernel

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* topK concept

Signed-off-by: raver119 <raver119@gmail.com>

* unsorted topK with scanWitdh of 1

Signed-off-by: raver119 <raver119@gmail.com>

* correct vol2col tests

* sorted/unsorted topK

Signed-off-by: raver119 <raver119@gmail.com>

* implementation and fixing col2im/col2vol

* Corrected usage flags with input/output with reverse op.

* dup is const now

Signed-off-by: raver119 <raver119@gmail.com>

* percentile op

Signed-off-by: raver119 <raver119@gmail.com>

* group tests for mapool2d

Signed-off-by: Yurii <yurii@skymind.io>

* special test for george

Signed-off-by: raver119 <raver119@gmail.com>

* less threads for sortTad

Signed-off-by: raver119 <raver119@gmail.com>

* provide conv2d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* remove auther in sort tad kernel code

Signed-off-by: Yurii <yurii@skymind.io>

* provide depthwise_conv2d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* - max_pooling_with_argmax
- null check for special use

Signed-off-by: raver119 <raver119@gmail.com>

* dts cuda

Signed-off-by: raver119 <raver119@gmail.com>

* provide sconv2d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* std cuda

Signed-off-by: raver119 <raver119@gmail.com>

* Refactored non_max_suppression op to conform TF implementation.

* Improved suppression helper.

* provide pooling3d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* minor lstm rearrangements

Signed-off-by: raver119 <raver119@gmail.com>

* more of minor lstm rearrangements

Signed-off-by: raver119 <raver119@gmail.com>

* (bi)dynamic_rnn

Signed-off-by: raver119 <raver119@gmail.com>

* templates init order

Signed-off-by: raver119 <raver119@gmail.com>

* Refactored non_max_suppression op.

* Added cuda kernel for non_max_suppression.

* CPU sort by key/value

Signed-off-by: raver119 <raver119@gmail.com>

* CPU sort TAD by key/value

Signed-off-by: raver119 <raver119@gmail.com>

* CPU sort TAD by key/value tests

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminate compiler error with cuda implementation.

* - repaired gradCheck in cuda
- provide conv2d_bp for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* missed signature

Signed-off-by: raver119 <raver119@gmail.com>

* provide depthwise_conv2d_bp for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of lup helper with cuda kernel. Initial commit.

* further work on backprops for convolutions

Signed-off-by: Yurii <yurii@skymind.io>

* CUDA linear sort by key/val

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA tad sort by key/val

Signed-off-by: raver119 <raver119@gmail.com>

* start providing of backprop for pooling2d/3d

Signed-off-by: Yurii <yurii@skymind.io>

* Added atomicAdd for bool datatype.

* dynamic partition concept

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic partition concept

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic partition scalar CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* important comment

Signed-off-by: raver119 <raver119@gmail.com>

* fix pooling2d/3d backprop helpers

Signed-off-by: Yurii <yurii@skymind.io>

* Added non-linear test with dynamic_partition.

* Improved test for dynamic_partition.

* dynamic_partition TAD concept

Signed-off-by: raver119 <raver119@gmail.com>

* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix

Signed-off-by: raver119 <raver119@gmail.com>

* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d

Signed-off-by: Yurii <yurii@skymind.io>

* dynamic_stitch CUDA vector case

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic_stitch CUDA TAD case concept

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic_stitch CUDA TAD case impl

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for dynamic_stitch 3D-4D cases.

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed type check for dynamic stitch.

* min/max bp

Signed-off-by: raver119 <raver119@gmail.com>

* rewrite code for upsampling2d/3d cpu

Signed-off-by: Yurii <yurii@skymind.io>

* reduce min/max/norm_max bp

Signed-off-by: raver119 <raver119@gmail.com>

* lup implementation. Additional enhancements.

* provide code for upsamling2d/3d backprop

Signed-off-by: Yurii <yurii@skymind.io>

* weightedCrossEntropyWithLogits

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed template math atomicMul for 64bit ints.

* Refactored dynamic_partition_bp op.

* inverseBroadcast fix

Signed-off-by: raver119 <raver119@gmail.com>

* DynamicPartitionBP test datatype fixed.

* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA

Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 18:37:04 +03:00

422 lines
20 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <ops/declarable/helpers/lrn.h>
#include <Status.h>
#include <ConstantTadHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
#ifdef HAVE_MKLDNN
using namespace mkldnn;
static void getMKLDNNMemoryDescLrn(const NDArray* src, const NDArray* diff_src, const NDArray* dst,
mkldnn::memory::desc* lrn_src_md, mkldnn::memory::desc* lrn_diff_src_md, mkldnn::memory::desc* lrn_dst_md,
mkldnn::memory::desc* user_src_md, mkldnn::memory::desc* user_diff_src_md, mkldnn::memory::desc* user_dst_md, int axis) {
const Nd4jLong* shape = src->getShapeInfo();
long rank = shape[0];
long dim1 = axis; // MKL-DNN supports only 1 axis, which has to be the "channel" one
long dim2 = axis >= 2 ? 1 : 2;
long dim3 = axis >= 3 ? 2 : 3;
mkldnn::memory::dims lrn_src_tz = { (int)shape[1], (int)shape[dim1 + 1], rank > 2 ? (int)shape[dim2 + 1] : 1, rank > 3 ? (int)shape[dim3 + 1] : 1};
auto type = mkldnn::memory::data_type::f32;
auto format = axis == 1 ? mkldnn::memory::format::nchw : mkldnn::memory::format::nhwc;
auto supposed_to_be_any_format = format; // doesn't work with "any"
if (src != nullptr && src->getBuffer() != nullptr && lrn_src_md != nullptr) {
*lrn_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, supposed_to_be_any_format);
*user_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, format);
user_src_md->data.format = mkldnn_blocked;
user_src_md->data.layout_desc.blocking.strides[0][0] = src->stridesOf()[0];
user_src_md->data.layout_desc.blocking.strides[0][1] = src->stridesOf()[dim1];
user_src_md->data.layout_desc.blocking.strides[0][2] = rank > 2 ? src->stridesOf()[dim2] : 1;
user_src_md->data.layout_desc.blocking.strides[0][3] = rank > 3 ? src->stridesOf()[dim3] : 1;
}
if (diff_src != nullptr && diff_src->getBuffer() != nullptr && lrn_diff_src_md != nullptr) {
*lrn_diff_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, supposed_to_be_any_format);
*user_diff_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, format);
user_diff_src_md->data.format = mkldnn_blocked;
user_diff_src_md->data.layout_desc.blocking.strides[0][0] = diff_src->stridesOf()[0];
user_diff_src_md->data.layout_desc.blocking.strides[0][1] = diff_src->stridesOf()[dim1];
user_diff_src_md->data.layout_desc.blocking.strides[0][2] = rank > 2 ? diff_src->stridesOf()[dim2] : 1;
user_diff_src_md->data.layout_desc.blocking.strides[0][3] = rank > 3 ? diff_src->stridesOf()[dim3] : 1;
}
if (dst != nullptr && dst->getBuffer() != nullptr && lrn_dst_md != nullptr) {
*lrn_dst_md = mkldnn::memory::desc({ lrn_src_tz }, type, supposed_to_be_any_format);
*user_dst_md = mkldnn::memory::desc({ lrn_src_tz }, type, format);
user_dst_md->data.format = mkldnn_blocked;
user_dst_md->data.layout_desc.blocking.strides[0][0] = dst->stridesOf()[0];
user_dst_md->data.layout_desc.blocking.strides[0][1] = dst->stridesOf()[dim1];
user_dst_md->data.layout_desc.blocking.strides[0][2] = rank > 2 ? dst->stridesOf()[dim2] : 1;
user_dst_md->data.layout_desc.blocking.strides[0][3] = rank > 3 ? dst->stridesOf()[dim3] : 1;
}
}
#endif
template <typename T>
static int lrnFunctor_(nd4j::graph::Context& block, NDArray* input, NDArray* output, int depth, float bias, float alpha, float beta) {
#ifdef HAVE_MKLDNN
if (block.isUseMKLDNN() && nd4j::MKLDNNStream::isSupported({input, output})) {
std::vector<nd4j::MKLDNNStream>& streams = block.getMKLDNNStreams();
if (streams.empty()) {
streams.push_back(MKLDNNStream("lrn"));
}
if (streams[0].checkAndReset({input}, {output}, {(float)bias, (float)alpha, (float)beta}, {depth})) {
mkldnn_memory_desc_t empty;
mkldnn::memory::desc lrn_src_md(empty), lrn_dst_md(empty), user_src_md(empty), user_dst_md(empty);
getMKLDNNMemoryDescLrn(input, nullptr, output, &lrn_src_md, nullptr, &lrn_dst_md, &user_src_md, nullptr, &user_dst_md, input->rankOf() - 1);
auto lrn_desc = lrn_forward::desc(prop_kind::forward_inference, lrn_across_channels, lrn_src_md, (2 * depth + 1), alpha * (2 * depth + 1), beta, bias);
auto engine = streams[0].getEngine();
auto lrn_prim_desc = lrn_forward::primitive_desc(lrn_desc, engine);
auto user_src_memory = mkldnn::memory({user_src_md, engine}, input->buffer());
auto user_dst_memory = mkldnn::memory({user_dst_md, engine}, output->buffer());
auto lrn_src_memory = user_src_memory;
streams[0].addMemory(user_src_memory);
if (mkldnn::memory::primitive_desc(lrn_prim_desc.src_primitive_desc())
!= user_src_memory.get_primitive_desc()) {
lrn_src_memory = mkldnn::memory(lrn_prim_desc.src_primitive_desc());
streams[0].addMemory(lrn_src_memory);
streams[0].addOperation(reorder(user_src_memory, lrn_src_memory));
}
auto lrn_dst_memory = user_dst_memory;
streams[0].addMemory(user_dst_memory);
if (mkldnn::memory::primitive_desc(lrn_prim_desc.dst_primitive_desc())
!= user_dst_memory.get_primitive_desc()) {
lrn_dst_memory = mkldnn::memory(lrn_prim_desc.dst_primitive_desc());
streams[0].addMemory(lrn_dst_memory);
}
streams[0].addOperation(lrn_forward(lrn_prim_desc, lrn_src_memory, lrn_dst_memory));
if (mkldnn::memory::primitive_desc(lrn_prim_desc.dst_primitive_desc())
!= user_dst_memory.get_primitive_desc()) {
streams[0].addOperation(reorder(lrn_dst_memory, user_dst_memory));
}
}
streams[0].submitAndWait();
return ND4J_STATUS_OK;
}
#endif
nd4j_debug("MKL-DNN is not used for lrn!\n", 0);
const int rank = input->rankOf();
TadPack inTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), {rank - 1});
TadPack outTadPack;
if(shape::haveSameShapeAndStrides(input->getShapeInfo(), output->getShapeInfo()))
outTadPack = inTadPack;
else
outTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), {rank - 1});
const Nd4jLong numOfTads = inTadPack.numberOfTads();
const Nd4jLong tadLen = input->sizeAt(-1);
const Nd4jLong* inTadOffsets = inTadPack.primaryOffsets();
const Nd4jLong* outTadOffsets = outTadPack.primaryOffsets();
const Nd4jLong inTadEws = shape::elementWiseStride(inTadPack.primaryShapeInfo());
const Nd4jLong outTadEws = shape::elementWiseStride(outTadPack.primaryShapeInfo());
const T* inBuff = reinterpret_cast<T*>(input->getBuffer());
T* outBuff = reinterpret_cast<T*>(output->getBuffer());
const T tbias = static_cast<T>(bias);
const T tbeta = static_cast<T>(beta);
const T talpha = static_cast<T>(alpha);
if(inTadEws == 1 && outTadEws == 1) {
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint i = 0; i < numOfTads; ++i) {
const T* x = inBuff + inTadOffsets[i];
T* y = outBuff + outTadOffsets[i];
T prev = 0;
// calculate squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
for (uint s = begin; s < end; ++s)
prev = prev + x[s] * x[s];
y[j] = prev;
}
else if (begin == 0 && last <= tadLen)
y[j] = prev + x[end - 1] * x[end - 1];
else if (begin > 0 && last <= tadLen)
y[j] = prev + x[end - 1] * x[end - 1] - x[begin - 1] * x[begin - 1];
else if (begin > 0 && last > tadLen)
y[j] = prev - x[begin - 1] * x[begin - 1];
else
y[j] = prev;
if(j != 0)
prev = y[j];
y[j] = x[j] / nd4j::math::nd4j_pow<T, T, T>(tbias + alpha * prev, tbeta);
}
}
}
else {
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint i = 0; i < numOfTads; ++i) {
const T* x = inBuff + inTadOffsets[i];
T* y = outBuff + outTadOffsets[i];
T prev = 0;
// calculate squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
for (uint s = begin; s < end; ++s)
prev = prev + x[s*inTadEws] * x[s*inTadEws];
y[j*outTadEws] = prev;
}
else if (begin == 0 && last <= tadLen)
y[j*outTadEws] = prev + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws];
else if (begin > 0 && last <= tadLen)
y[j*outTadEws] = prev + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws] - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws];
else if (begin > 0 && last > tadLen)
y[j*outTadEws] = prev - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws];
else
y[j*outTadEws] = prev;
if(j != 0)
prev = y[j*outTadEws];
y[j*outTadEws] = x[j*inTadEws] / nd4j::math::nd4j_pow<T, T, T>(tbias + alpha * prev, tbeta);
}
}
}
return Status::OK();
}
BUILD_SINGLE_TEMPLATE(template int lrnFunctor_, (nd4j::graph::Context& block, NDArray* input, NDArray* output, int depth, float bias, float alpha, float beta), FLOAT_TYPES);
int lrnFunctor(nd4j::graph::Context& block, NDArray* input, NDArray* output, int depth, double bias, double alpha, double beta) {
BUILD_SINGLE_SELECTOR(input->dataType(), return lrnFunctor_, (block, input, output, depth, bias, alpha, beta), FLOAT_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template <typename X, typename Y>
static void lrnBP_(const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta) {
const int rank = input.rankOf();
TadPack inTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), {rank - 1});
TadPack gradITadPack;
if(shape::haveSameShapeAndStrides(input.getShapeInfo(), gradI.getShapeInfo()))
gradITadPack = inTadPack;
else
gradITadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(gradI.getShapeInfo(), {rank - 1});
const Nd4jLong numOfTads = inTadPack.numberOfTads();
const Nd4jLong tadLen = input.sizeAt(-1);
const Nd4jLong* inTadOffsets = inTadPack.primaryOffsets();
const Nd4jLong* gradITadOffsets = gradITadPack.primaryOffsets();
const Nd4jLong inTadEws = shape::elementWiseStride(inTadPack.primaryShapeInfo());
const Nd4jLong gradITadEws = shape::elementWiseStride(gradITadPack.primaryShapeInfo());
const X* inBuff = reinterpret_cast<X*>(input.getBuffer());
Y* gradIBuff = reinterpret_cast<Y*>(gradI.getBuffer());
const Y tbias = static_cast<Y>(bias);
const Y tbeta = static_cast<Y>(beta);
const Y talpha = static_cast<Y>(alpha);
const Y coeff = talpha * tbeta;
if(inTadEws == 1 && gradITadEws == 1) {
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint i = 0; i < numOfTads; ++i) {
const X* x = inBuff + inTadOffsets[i];
Y* y = gradIBuff + gradITadOffsets[i];
// this loop calculates squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
y[0] = 0;
for (uint s = begin; s < end; ++s)
y[0] = y[0] + x[s] * x[s];
}
else if (begin == 0 && last <= tadLen)
y[j] = y[j - 1] + x[end - 1] * x[end - 1];
else if (begin > 0 && last <= tadLen)
y[j] = y[j - 1] + x[end - 1] * x[end - 1] - x[begin - 1] * x[begin - 1];
else if (begin > 0 && last > tadLen)
y[j] = y[j - 1] - x[begin - 1] * x[begin - 1];
else
y[j] = y[j - 1];
}
Y* factor = new Y[tadLen];
Y prev = 0;
// second loop calculates derivatives using information gained in first loop above
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
Y init = tbias + talpha * y[j];
if (j == 0) {
for (uint s = begin; s < end; ++s) {
factor[s] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[s], -tbeta - 1);
prev = prev + x[s] * factor[s];
}
y[0] = prev;
}
else if(begin == 0 && last <= tadLen) {
factor[end - 1] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[end - 1], -tbeta - 1);
y[j] = prev + x[end - 1] * factor[end - 1];
}
else if (begin > 0 && last <= tadLen) {
factor[end - 1] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[end - 1], -tbeta - 1);
y[j] = prev + x[end - 1] * factor[end - 1] - x[begin - 1] * factor[begin - 1];
}
else if (begin > 0 && last > tadLen)
y[j] = prev - x[begin - 1] * factor[begin - 1];
else
y[j] = prev;
if(j != 0)
prev = y[j];
y[j] = factor[j] * init - 2 * x[j] * coeff * prev;
}
delete []factor;
}
}
else {
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint i = 0; i < numOfTads; ++i) {
const X* x = inBuff + inTadOffsets[i];
Y* y = gradIBuff + gradITadOffsets[i];
// this loop calculates squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
y[0] = 0;
for (uint s = begin; s < end; ++s)
y[0] = y[0] + x[s*inTadEws] * x[s*inTadEws];
}
else if (begin == 0 && last <= tadLen)
y[j*gradITadEws] = y[(j - 1)*gradITadEws] + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws];
else if (begin > 0 && last <= tadLen)
y[j*gradITadEws] = y[(j - 1)*gradITadEws] + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws] - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws];
else if (begin > 0 && last > tadLen)
y[j*gradITadEws] = y[(j - 1)*gradITadEws] - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws];
else
y[j*gradITadEws] = y[(j - 1)*gradITadEws];
}
Y* factor = new Y[tadLen];
Y prev = 0;
// second loop calculates derivatives using information gained in first loop above
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
Y init = tbias + talpha * y[j*gradITadEws];
if (j == 0) {
for (uint s = begin; s < end; ++s) {
factor[s] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[s*gradITadEws], -tbeta - 1);
prev = prev + x[s*inTadEws] * factor[s];
}
y[0] = prev;
}
else if(begin == 0 && last <= tadLen) {
factor[end - 1] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[(end - 1)*gradITadEws], -tbeta - 1);
y[j*gradITadEws] = prev + x[(end - 1)*inTadEws] * factor[end - 1];
}
else if (begin > 0 && last <= tadLen) {
factor[end - 1] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[(end - 1)*gradITadEws], -tbeta - 1);
y[j*gradITadEws] = prev + x[(end - 1)*inTadEws] * factor[end - 1] - x[(begin - 1)*inTadEws] * factor[begin - 1];
}
else if (begin > 0 && last > tadLen)
y[j*gradITadEws] = prev - x[(begin - 1)*inTadEws] * factor[begin - 1];
else
y[j*gradITadEws] = prev;
if(j != 0)
prev = y[j*gradITadEws];
y[j*gradITadEws] = factor[j] * init - 2 * x[j*inTadEws] * coeff * prev;
}
delete []factor;
}
}
gradI *= gradO;
}
BUILD_DOUBLE_TEMPLATE(template void lrnBP_, (const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta), LIBND4J_TYPES, FLOAT_TYPES);
void lrnBP(nd4j::graph::Context& block, const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta) {
BUILD_DOUBLE_SELECTOR(input.dataType(), gradO.dataType(), lrnBP_, (input, gradO, gradI, depth, bias, alpha, beta), LIBND4J_TYPES, FLOAT_TYPES);
}
}
}
}