cavis/libnd4j/include/loops/summarystatsreduce.h

345 lines
11 KiB
C++
Executable File

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
/*
* summarystatsreduce.h
*
* Created on: Jan 19, 2016
* Author: agibsonccc
*/
#ifndef SUMMARYSTATSREDUCE_H_
#define SUMMARYSTATSREDUCE_H_
#include <templatemath.h>
#include <dll.h>
#include <helpers/shape.h>
#ifdef __CUDACC__
#include <cuda.h>
#include <cuda_runtime.h>
#define host_and_device inline __host__ __device__
#else
#define host_and_device inline
#endif
#ifdef __JNI__
#include <jni.h>
#endif
#include <ops/ops.h>
#include <op_boilerplate.h>
#include "legacy_ops.h"
namespace functions {
namespace summarystats {
// This example computes several statistical properties of a data
// series in a single reduction. The algorithm is described in detail here:
// http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm
//
// Thanks to Joseph Rhoads for contributing this example
// structure used to accumulate the moments and other
// statistical properties encountered so far.
template <typename X>
class SummaryStatsData {
public:
double n;
double min;
double max;
double mean;
double M2;
double M3;
double M4;
double bias;
_CUDA_HD SummaryStatsData() {
initialize();
}
// initialize to the identity element
_CUDA_HD void initialize() {
n = mean = M2 = M3 = M4 = bias = 0;
}
_CUDA_HD void initWithValue(X val) {
n = 1;
min = val;
max = val;
mean = val;
M2 = 0;
M3 = 0;
M4 = 0;
bias = 0;
}
_CUDA_HD void setValues(SummaryStatsData<X> *target) {
n = target->n;
min = target->min;
max = target->max;
mean = target->mean;
M2 = target->M2;
M3 = target->M3;
M4 = target->M4;
bias = target->bias;
}
_CUDA_HD double variance() {
if (n <= 1.0)
return 0.0;
return M2 / (n);
}
_CUDA_HD double varianceBiasCorrected() {
if (this->n <= 1.0) {
return 0.0;
}
return M2 / (n - 1.0);
}
_CUDA_HD double variance_n() {
if (n <= 1.0)
return 0.0;
return M2 / n;
}
_CUDA_HD double skewness() { return M2 > 0.0 ? nd4j::math::nd4j_sqrt<double, double>(n) * M3 / nd4j::math::nd4j_pow<double, double, double>(M2, 1.5) : 0.0; }
_CUDA_HD double kurtosis() { return M2 > 0.0 ? n * M4 / (M2 * M2) : 0; }
_CUDA_HD double getM2() {
return M2;
}
_CUDA_HD void setM2(X m2) {
M2 = m2;
}
_CUDA_HD double getM3() {
return M3;
}
_CUDA_HD void setM3(X m3) {
M3 = m3;
}
_CUDA_HD double getM4() {
return M4;
}
_CUDA_HD void setM4(X m4) {
M4 = m4;
}
_CUDA_HD double getMax() {
return max;
}
_CUDA_HD void setMax(X max) {
this->max = max;
}
_CUDA_HD double getMean() {
return mean;
}
_CUDA_HD void setMean(X mean) {
this->mean = mean;
}
_CUDA_HD double getMin() {
return min;
}
_CUDA_HD void setMin(X min) {
this->min = min;
}
_CUDA_HD double getN() {
return n;
}
_CUDA_HD void setN(X n) {
this->n = n;
}
};
#ifdef __CUDACC__
// This is the un-specialized struct. Note that we prevent instantiation of this
// struct by putting an undefined symbol in the function body so it won't compile.
template<typename T>
struct SharedSummaryStatsData {
// Ensure that we won't compile any un-specialized types
__device__ T * getPointer() {
extern __device__ void error(void);
error();
return 0;
}
};
// Following are the specializations for the following types.
// int, uint, char, uchar, short, ushort, long long, ulong long, bool, float, and double
// One could also specialize it for user-defined types.
template<>
struct SharedSummaryStatsData<float> {
__device__ SummaryStatsData<float> * getPointer() {
extern __shared__ SummaryStatsData<float> s_int2[];
return s_int2;
}
};
// Following are the specializations for the following types.
// int, uint, char, uchar, short, ushort, long long, ulong long, bool, float, and double
// One could also specialize it for user-defined types.
template<>
struct SharedSummaryStatsData<double> {
__device__ SummaryStatsData<double> * getPointer() {
extern __shared__ SummaryStatsData<double> s_int6[];
return s_int6;
}
};
#endif
/**
* Standard deviation or variance 1 pass
*/
template<typename X, typename Z>
class SummaryStatsReduce {
public:
//calculate an update of the reduce operation
_CUDA_HD static SummaryStatsData<X> update(SummaryStatsData<X> x, SummaryStatsData<X> y,
void* extraParams) {
if ((long) x.n == 0 && (long) y.n > 0)
return y;
else if ((long) x.n > 0 && (long) y.n == 0)
return x;
SummaryStatsData<X> vz;
double n = x.n + y.n;
double n2 = n * n;
double n3 = n2 * n;
double delta = y.mean - x.mean;
double delta2 = delta * delta;
double delta3 = delta2 * delta;
double delta4 = delta3 * delta;
//Basic number of samples (n), min, and max
vz.n = n;
vz.min = nd4j::math::nd4j_min(x.min, y.min);
vz.max = nd4j::math::nd4j_max(x.max, y.max);
double meanD = x.mean + delta * y.n / n;
vz.mean = meanD;
double M2D = x.M2 + y.M2;
M2D += delta2 * x.n * y.n / n;
vz.M2 = M2D;
vz.M3 = x.M3 + y.M3;
vz.M3 += delta3 * x.n * y.n * (x.n - y.n) / n2;
vz.M3 += 3.0 * delta * (x.n * y.M2 - y.n * x.M2) / n;
vz.M4 = x.M4 + y.M4;
vz.M4 += delta4 * x.n * y.n * (x.n * x.n - x.n * y.n + y.n * y.n) / n3;
vz.M4 += 6.0 * delta2 * (x.n * x.n * y.M2 + y.n * y.n * x.M2) / n2;
vz.M4 += 4.0 * delta * (x.n * y.M3 - y.n * x.M3) / n;
return vz;
}
#ifdef __CUDACC__
static inline _CUDA_D Z startingValue(X *input) {
return static_cast<Z>(0);
}
template<typename OpType>
static _CUDA_D void aggregatePartials(SummaryStatsData<X> **sPartialsRef, Nd4jLong tid, Nd4jLong numElements, void *extraParams);
template<typename OpType>
static _CUDA_D void transform(void *dx, Nd4jLong *xShapeInfo, void *extraParams, void *vz, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, int postProcessOrNot, int *allocationBuffer, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets);
static _CUDA_D void transform(const int opNum, void *dx, Nd4jLong *xShapeInfo, void *extraParams, void *vz, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, int postProcessOrNot, int *allocationBuffer, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets);
static _CUDA_H void execSummaryStatsReduceScalar(dim3& launchDims, cudaStream_t *stream, int opNum, void *x, Nd4jLong *xShapeInfo, Nd4jLong *hxShapeInfo, void *extraParams, void *vz, Nd4jLong *zShapeInfo, Nd4jLong *hzShapeInfo, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets, bool biasCorrected, void *reductionBuffer);
static _CUDA_H void execSummaryStatsReduce(dim3& launchDims, cudaStream_t *stream, int opNum, void *x, Nd4jLong *xShapeInfo, Nd4jLong *hxShapeInfo, void *extraParams, void *vz, Nd4jLong *zShapeInfo, Nd4jLong *hzShapeInfo, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets, bool biasCorrected, void *reductionBuffer);
static _CUDA_H void execSummaryStatsReduce(dim3& launchDims, cudaStream_t *stream, int opNum, void *x, Nd4jLong *xShapeInfo, Nd4jLong *hxShapeInfo, void *extraParams, void *vz, Nd4jLong *zShapeInfo, Nd4jLong *hzShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets, bool biasCorrected, void *reductionBuffer);
#endif
static Z execScalar(int opNum,
bool biasCorrected,
void *x,
Nd4jLong *xShapeInfo,
void *extraParams);
static void execScalar(int opNum,
bool biasCorrected,
void *x,
Nd4jLong *xShapeInfo,
void *extraParams,
void *vz,
Nd4jLong *resultShapeInfoBuffer);
static void exec(int opNum,
bool biasCorrected,
void *x,
Nd4jLong *xShapeInfo,
void *extraParams,
void *vz,
Nd4jLong *resultShapeInfoBuffer,
int *dimension, int dimensionLength);
template<typename OpType>
static Z execScalar(bool biasCorrected,
void *x,
Nd4jLong *xShapeInfo,
void *extraParams);
template<typename OpType>
static void execScalar(bool biasCorrected,
void *x,
Nd4jLong *xShapeInfo,
void *extraParams,
void *vz,
Nd4jLong *resultShapeInfoBuffer);
template<typename OpType>
static void exec(bool biasCorrected,
void *x,
Nd4jLong *xShapeInfo,
void *extraParams,
void *vz,
Nd4jLong *resultShapeInfoBuffer,
int *dimension,
int dimensionLength);
};
}
}
#endif /* SUMMARYSTATSREDUCE_H_ */