98 lines
3.6 KiB
C++
98 lines
3.6 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 16.04.2018
|
|
//
|
|
|
|
// function nnCell implements an Elman RNN cell: output = activation(Wx*x + bx + Wh*ht + bh)
|
|
|
|
#include<ops/declarable/helpers/rnn.h>
|
|
#include <helpers/BlasHelper.h>
|
|
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void rnnCell(nd4j::LaunchContext * context, const NDArray* xt, const NDArray* Wx, const NDArray* Wh, const NDArray* b, const NDArray* hPrev, NDArray* ht) {
|
|
|
|
// xt input [bS x iS]
|
|
// Wx input-to-hidden weights, [iS x nU]
|
|
// Wh hidden-to-hidden weights, [nU x nU]
|
|
// b biases, [2*nU]: {0, nU} are input-to-hidden biases and {nU, 2*nU} are hidden-to-hidden biases
|
|
// hPrev previous cell output [bS x nU], that is at previous time step t-1, in case of projection=false -> nU=nU!!!
|
|
|
|
const int nU = hPrev->sizeAt(1);
|
|
|
|
// ht is current cell output [bS x nU], that is at current time step t
|
|
ht->assign(mmul(*xt, *Wx) + (*b)({{0, nU}}) + mmul(*hPrev, *Wh) + (*b)({{nU, 2*nU}})); // [bS x nU] + [nU] + [bS x nU] + [nU] = [bS x nU]
|
|
ht->applyTransform(transform::Tanh, *ht);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void rnnTimeLoop(nd4j::LaunchContext * context, const NDArray* x, const NDArray* Wx, const NDArray* Wh, const NDArray* b, const NDArray* h0, const NDArray* maxTimeStep, NDArray* h, NDArray* hFinal) {
|
|
|
|
// x input [time x bS x iS]
|
|
// Wx input-to-hidden weights, [iS x nU]
|
|
// Wh hidden-to-hidden weights, [nU x nU]
|
|
// b biases for, [2*nU]
|
|
|
|
// h0 initial cell output (at time step = 0) [bS x nU]
|
|
// maxTimeStep vector [bS] containing integer values within [0,time), each element of this vector set max time step per each input in batch, this means there are no calculations for time >= maxTimeStep
|
|
|
|
const int time = x->sizeAt(0);
|
|
const int bS = x->sizeAt(1);
|
|
|
|
// at first time step
|
|
if(h0)
|
|
hFinal->assign(h0);
|
|
else
|
|
*hFinal = 0.;
|
|
|
|
BlasHelper::getInstance(); // to avoid memory leak in pragma parallel loops
|
|
// loop through batch of inputs
|
|
for (int e = 0; e < bS; ++e) {
|
|
// loop through time steps
|
|
for (int t = 0; t < time; ++t) {
|
|
|
|
int maxStep = maxTimeStep ? maxTimeStep->e<int>(e) : time;
|
|
|
|
auto xt = (*x)({t,t+1, e,e+1, 0,0}, true);
|
|
auto ht = (*h)({t,t+1, e,e+1, 0,0}, true);
|
|
auto hPrev = (*hFinal)({e,e+1, 0,0}, true); // previous state
|
|
|
|
if(t >= maxStep) {
|
|
ht = 0.;
|
|
if(maxStep != 0)
|
|
hPrev.assign((*h)({maxStep-1,maxStep, e,e+1, 0,0}));
|
|
}
|
|
else {
|
|
helpers::rnnCell(context, &xt, Wx, Wh, b, &hPrev, &ht);
|
|
hPrev.assign(ht);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
}
|
|
|