244 lines
12 KiB
Plaintext
244 lines
12 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#include <system/op_boilerplate.h>
|
|
#include <loops/broadcasting.h>
|
|
#include <loops/legacy_ops.h>
|
|
#include <types/types.h>
|
|
#include <system/Environment.h>
|
|
#include <cuda.h>
|
|
#include <cuda_runtime.h>
|
|
#include <string>
|
|
#include <stdexcept>
|
|
#include <helpers/StringUtils.h>
|
|
#include <ops/specials_cuda.h>
|
|
|
|
using namespace simdOps;
|
|
|
|
template<typename X, typename Y, typename Z, typename OpClass>
|
|
static __global__ void broadcastSimple(
|
|
void *x,
|
|
Nd4jLong *xShapeInfo,
|
|
void *y,
|
|
Nd4jLong *yShapeInfo,
|
|
void *z,
|
|
Nd4jLong *zShapeInfo,
|
|
int *dimension,
|
|
int dimensionLength, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets, Nd4jLong *tadOnlyShapeInfoZ, Nd4jLong *tadOffsetsZ) {
|
|
|
|
functions::broadcast::Broadcast<X,Y,Z>::template transformCuda<OpClass>(x,xShapeInfo,y,yShapeInfo,z,zShapeInfo,dimension,dimensionLength,tadOnlyShapeInfo,tadOffsets,tadOnlyShapeInfoZ,tadOffsetsZ);
|
|
}
|
|
|
|
template<typename X, typename Y, typename Z, typename OpClass>
|
|
static __global__ void broadcastInverseSimple(
|
|
void *x,
|
|
Nd4jLong *xShapeInfo,
|
|
void *y,
|
|
Nd4jLong *yShapeInfo,
|
|
void *z,
|
|
Nd4jLong *zShapeInfo,
|
|
int *dimension,
|
|
int dimensionLength, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets, Nd4jLong *tadOnlyShapeInfoZ, Nd4jLong *tadOffsetsZ) {
|
|
|
|
functions::broadcast::Broadcast<X,Y,Z>::template transformInverseCuda<OpClass>(x,xShapeInfo,y,yShapeInfo,z,zShapeInfo,dimension,dimensionLength,tadOnlyShapeInfo,tadOffsets,tadOnlyShapeInfoZ,tadOffsetsZ);
|
|
}
|
|
|
|
|
|
namespace functions {
|
|
namespace broadcast {
|
|
|
|
static Nd4jLong __device__ __noinline__ _getIndexOffset(Nd4jLong index, Nd4jLong *shapeInfo) {
|
|
return shape::getIndexOffset(index, shapeInfo);
|
|
}
|
|
|
|
static Nd4jLong __device__ __noinline__ _length(Nd4jLong *shapeInfo) {
|
|
return shape::length(shapeInfo);
|
|
}
|
|
|
|
template<typename X, typename Y, typename Z>
|
|
template <typename OpClass>
|
|
__host__ void Broadcast<X,Y,Z>::intermediateBroadcast(dim3 launchDims, cudaStream_t *stream, void *x, Nd4jLong *xShapeInfo, void *y, Nd4jLong *yShapeInfo, void *z, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets, Nd4jLong *tadOnlyShapeInfoZ, Nd4jLong *tadOffsetsZ) {
|
|
broadcastSimple<X, Y, Z, OpClass><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(x, xShapeInfo, y, yShapeInfo, z, zShapeInfo, dimension, dimensionLength, tadOnlyShapeInfo, tadOffsets, tadOnlyShapeInfoZ, tadOffsetsZ);
|
|
}
|
|
|
|
template<typename X, typename Y, typename Z>
|
|
__host__ void Broadcast<X,Y,Z>::execBroadcast(dim3 launchDims, cudaStream_t *stream, int opNum, void *x, Nd4jLong *xShapeInfo, void *y, Nd4jLong *yShapeInfo, void *z, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets, Nd4jLong *tadOnlyShapeInfoZ, Nd4jLong *tadOffsetsZ) {
|
|
DISPATCH_BY_OPNUM_TTT(intermediateBroadcast, PARAMS(launchDims, stream, x, xShapeInfo, y, yShapeInfo, z, zShapeInfo, dimension, dimensionLength, tadOnlyShapeInfo, tadOffsets, tadOnlyShapeInfoZ, tadOffsetsZ), OPS_A(BROADCAST_OPS))
|
|
|
|
DEBUG_KERNEL(stream, opNum);
|
|
}
|
|
|
|
template<typename X, typename Y, typename Z>
|
|
template <typename OpClass>
|
|
__host__ void Broadcast<X,Y,Z>::intermediateInverseBroadcast(dim3 launchDims, cudaStream_t *stream, void *x, Nd4jLong *xShapeInfo, void *y, Nd4jLong *yShapeInfo, void *z, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets, Nd4jLong *tadOnlyShapeInfoZ, Nd4jLong *tadOffsetsZ) {
|
|
broadcastInverseSimple<X, Y, Z, OpClass><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(x, xShapeInfo, y, yShapeInfo, z, zShapeInfo, dimension, dimensionLength, tadOnlyShapeInfo, tadOffsets, tadOnlyShapeInfoZ, tadOffsetsZ);
|
|
}
|
|
|
|
template<typename X, typename Y, typename Z>
|
|
__host__ void Broadcast<X,Y,Z>::execInverseBroadcast(dim3 launchDims, cudaStream_t *stream, int opNum, void *x, Nd4jLong *xShapeInfo, void *y, Nd4jLong *yShapeInfo, void *z, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets, Nd4jLong *tadOnlyShapeInfoZ, Nd4jLong *tadOffsetsZ) {
|
|
DISPATCH_BY_OPNUM_TTT(intermediateInverseBroadcast, PARAMS(launchDims, stream, x, xShapeInfo, y, yShapeInfo, z, zShapeInfo, dimension, dimensionLength, tadOnlyShapeInfo, tadOffsets, tadOnlyShapeInfoZ, tadOffsetsZ), OPS_A(BROADCAST_OPS))
|
|
|
|
DEBUG_KERNEL(stream, opNum);
|
|
}
|
|
|
|
template<typename X, typename Y, typename Z>
|
|
template <typename OpType>
|
|
__device__ void Broadcast<X,Y,Z>::transformInverseCuda(
|
|
void *vx, Nd4jLong *xShapeInfo,
|
|
void *vy, Nd4jLong *yShapeInfo,
|
|
void *vz, Nd4jLong *zShapeInfo,
|
|
int *dimension, int dimensionLength,
|
|
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets, Nd4jLong *tadOnlyShapeInfoZ, Nd4jLong *tadOffsetsZ) {
|
|
|
|
if (tadOnlyShapeInfoZ == nullptr) {
|
|
tadOnlyShapeInfoZ = tadOnlyShapeInfo;
|
|
tadOffsetsZ = tadOffsets;
|
|
}
|
|
|
|
auto x = reinterpret_cast<X*>(vx);
|
|
auto y = reinterpret_cast<Y*>(vy);
|
|
auto z = reinterpret_cast<Z*>(vz);
|
|
|
|
//decompose in to several sub tads after
|
|
//moving all dimensions (in sorted order)
|
|
//to the back.
|
|
//permuted version of the x shape info for setting up the tad problem
|
|
__shared__ Nd4jLong tadLength;
|
|
__shared__ Nd4jLong tadEWS;
|
|
__shared__ int numTads;
|
|
__shared__ Nd4jLong xEWS;
|
|
__shared__ Nd4jLong zEWS;
|
|
|
|
|
|
if (threadIdx.x == 0) {
|
|
tadLength = _length(tadOnlyShapeInfo);
|
|
tadEWS = shape::elementWiseStride(tadOnlyShapeInfo);
|
|
numTads = _length(yShapeInfo) / tadLength;
|
|
xEWS = shape::elementWiseStride(xShapeInfo);
|
|
zEWS = shape::elementWiseStride(tadOnlyShapeInfoZ);
|
|
}
|
|
__syncthreads();
|
|
|
|
auto xOrder = shape::order(xShapeInfo);
|
|
auto yOrder = shape::order(tadOnlyShapeInfo);
|
|
auto zOrder = shape::order(tadOnlyShapeInfoZ);
|
|
|
|
for (int r = blockIdx.x; r < numTads; r += gridDim.x) {
|
|
|
|
|
|
auto rY = y + tadOffsets[r];
|
|
auto rZ = z + tadOffsetsZ[r];
|
|
|
|
|
|
if(tadEWS > 0 && zEWS > 0 && xEWS > 0 && dimensionLength == 1 && xOrder == yOrder && xOrder == zOrder) {
|
|
for (int i = threadIdx.x; i < tadLength; i+= blockDim.x)
|
|
rZ[i * zEWS] = OpType::op(x[i * xEWS], rY[i * tadEWS]);
|
|
}
|
|
else {
|
|
// it is expected that x and z tads and y array all have the same length
|
|
for (Nd4jLong i = threadIdx.x; i < tadLength; i+= blockDim.x) {
|
|
auto xOffset = _getIndexOffset(i, xShapeInfo);
|
|
auto yOffset = _getIndexOffset(i, tadOnlyShapeInfo);
|
|
auto zOffset = _getIndexOffset(i, tadOnlyShapeInfoZ);
|
|
rZ[zOffset] = OpType::op(x[xOffset], rY[yOffset]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template<typename X, typename Y, typename Z>
|
|
template <typename OpType>
|
|
__device__ void Broadcast<X,Y,Z>::transformCuda(
|
|
void *vx, Nd4jLong *xShapeInfo,
|
|
void *vy, Nd4jLong *yShapeInfo,
|
|
void *vz, Nd4jLong *zShapeInfo,
|
|
int *dimension, int dimensionLength,
|
|
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets, Nd4jLong *tadOnlyShapeInfoZ, Nd4jLong *tadOffsetsZ) {
|
|
|
|
if (tadOnlyShapeInfoZ == nullptr) {
|
|
tadOnlyShapeInfoZ = tadOnlyShapeInfo;
|
|
tadOffsetsZ = tadOffsets;
|
|
}
|
|
|
|
auto x = reinterpret_cast<X*>(vx);
|
|
auto y = reinterpret_cast<Y*>(vy);
|
|
auto z = reinterpret_cast<Z*>(vz);
|
|
|
|
//decompose in to several sub tads after
|
|
//moving all dimensions (in sorted order)
|
|
//to the back.
|
|
//permuted version of the x shape info for setting up the tad problem
|
|
__shared__ Nd4jLong tadLength;
|
|
__shared__ Nd4jLong tadEWS;
|
|
__shared__ int numTads;
|
|
__shared__ Nd4jLong yEWS;
|
|
__shared__ Nd4jLong zEWS;
|
|
|
|
if (threadIdx.x == 0) {
|
|
tadLength = _length(tadOnlyShapeInfo);
|
|
tadEWS = shape::elementWiseStride(tadOnlyShapeInfo);
|
|
numTads = _length(xShapeInfo) / tadLength;
|
|
yEWS = shape::elementWiseStride(yShapeInfo);
|
|
zEWS = shape::elementWiseStride(tadOnlyShapeInfoZ);
|
|
}
|
|
__syncthreads();
|
|
|
|
auto xOrder = shape::order(tadOnlyShapeInfo);
|
|
auto yOrder = shape::order(yShapeInfo);
|
|
auto zOrder = shape::order(tadOnlyShapeInfoZ);
|
|
|
|
for (int r = blockIdx.x; r < numTads; r += gridDim.x) {
|
|
|
|
auto rX = x + tadOffsets[r];
|
|
auto rZ = z + tadOffsetsZ[r];
|
|
|
|
|
|
if(tadEWS > 0 && zEWS > 0 && yEWS > 0 && xOrder == yOrder && xOrder == zOrder) {
|
|
for (int i = threadIdx.x; i < tadLength; i+= blockDim.x)
|
|
rZ[i * zEWS] = OpType::op(rX[i * tadEWS], y[i * yEWS]);
|
|
}
|
|
else {
|
|
// it is expected that x and z tads and y array all have the same length
|
|
for (Nd4jLong i = threadIdx.x; i < tadLength; i+= blockDim.x) {
|
|
|
|
auto xOffset = _getIndexOffset(i, tadOnlyShapeInfo);
|
|
auto yOffset = _getIndexOffset(i, yShapeInfo);
|
|
auto zOffset = _getIndexOffset(i, tadOnlyShapeInfoZ);
|
|
rZ[zOffset] = OpType::op(rX[xOffset], y[yOffset]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_0);
|
|
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_1);
|
|
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_2);
|
|
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_3);
|
|
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_4);
|
|
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_5);
|
|
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_6);
|
|
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_7);
|
|
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_8);
|
|
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_9);
|
|
*/
|
|
}
|
|
} |