121 lines
4.8 KiB
Plaintext
121 lines
4.8 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// Created by GS <sgazeos@gmail.com> on 4/6/2018.
|
|
//
|
|
|
|
#include "ResultSet.h"
|
|
#include <ops/declarable/helpers/diag.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
template <typename T>
|
|
static __global__ void diagFunctorKernel(void* outputBuffer, Nd4jLong* outputShape, void const* inputBuffer, Nd4jLong* inputShape, Nd4jLong inputLength) {
|
|
__shared__ T *z;
|
|
__shared__ T const* x;
|
|
__shared__ Nd4jLong outputLength;
|
|
|
|
if (threadIdx.x == 0) {
|
|
z = reinterpret_cast<T*>(outputBuffer);
|
|
x = reinterpret_cast<T const*>(inputBuffer);
|
|
|
|
outputLength = shape::length(outputShape);
|
|
}
|
|
__syncthreads();
|
|
|
|
const auto tid = blockIdx.x * gridDim.x + threadIdx.x;
|
|
const auto step = gridDim.x * blockDim.x;
|
|
for (int t = tid; t < inputLength; t += step) {
|
|
z[shape::getIndexOffset(t * (inputLength + 1), outputShape, outputLength)] = x[shape::getIndexOffset(t, inputShape, inputLength)]; //tX];
|
|
}
|
|
|
|
}
|
|
|
|
template <typename T>
|
|
static __global__ void diagPartFunctorKernel(void* outputBuffer, Nd4jLong* outputShape, void const* inputBuffer, Nd4jLong* inputShape, Nd4jLong outputLength, Nd4jLong inputLength) {
|
|
__shared__ T *z;
|
|
__shared__ T const* x;
|
|
|
|
if (threadIdx.x == 0) {
|
|
z = reinterpret_cast<T*>(outputBuffer);
|
|
x = reinterpret_cast<T const*>(inputBuffer);
|
|
|
|
}
|
|
__syncthreads();
|
|
|
|
const auto tid = blockIdx.x * gridDim.x + threadIdx.x;
|
|
const auto step = gridDim.x * blockDim.x;
|
|
Nd4jLong i = threadIdx.x * (outputLength + 1);
|
|
for (int t = tid; t < outputLength && i < inputLength; t += step) {
|
|
z[shape::getIndexOffset(t, outputShape, outputLength)] = x[shape::getIndexOffset(i, inputShape, inputLength)]; //tX];
|
|
i += outputLength + 1;
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// Returns a batched matrix tensor with new batched diagonal values.
|
|
// for detailed explanations please take a look on web page: https://www.tensorflow.org/api_docs/python/tf/matrix_set_diag
|
|
template <typename T>
|
|
static void _diagFunctor(nd4j::LaunchContext * context, const NDArray* input, NDArray* output) {
|
|
auto stream = context->getCudaStream();
|
|
auto inputLength = input->lengthOf();
|
|
dim3 launchDims(256, 512, 8192);
|
|
if (!input->isActualOnDeviceSide())
|
|
input->syncToDevice();
|
|
diagFunctorKernel<T><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(output->specialBuffer(), output->specialShapeInfo(), input->getSpecialBuffer(), input->getSpecialShapeInfo(), inputLength);
|
|
}
|
|
|
|
void diagFunctor(nd4j::LaunchContext * context, const NDArray* input, NDArray* output) {
|
|
auto xType = input->dataType();
|
|
|
|
BUILD_SINGLE_SELECTOR(xType, _diagFunctor, (context, input, output), LIBND4J_TYPES);
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void _diagFunctor, (nd4j::LaunchContext * context, const NDArray* input, NDArray* output);, LIBND4J_TYPES);
|
|
|
|
template <typename T>
|
|
void _diagPartFunctor(nd4j::LaunchContext * context, NDArray const* input, NDArray* output) {
|
|
const int outLen = output->lengthOf();
|
|
const int inLen = input->lengthOf();
|
|
auto stream = context->getCudaStream();
|
|
|
|
dim3 launchDims(256, 512, 8192);
|
|
if (!input->isActualOnDeviceSide())
|
|
input->syncToDevice();
|
|
|
|
diagPartFunctorKernel<T><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(output->specialBuffer(), output->specialShapeInfo(), input->getSpecialBuffer(), input->getSpecialShapeInfo(), outLen, inLen);
|
|
// int i(0), j;
|
|
// for (j = 0;j < outLen; j++) {
|
|
// output->p(j, input->e(i));
|
|
// i += outLen + 1;
|
|
// }
|
|
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void _diagPartFunctor, (nd4j::LaunchContext * context, const NDArray* input, NDArray* output);, LIBND4J_TYPES);
|
|
|
|
void diagPartFunctor(nd4j::LaunchContext * context, NDArray const* input, NDArray* output) {
|
|
auto zType = output->dataType();
|
|
BUILD_SINGLE_SELECTOR(zType, _diagPartFunctor, (context, input, output), LIBND4J_TYPES);
|
|
|
|
}
|
|
|
|
}
|
|
}
|
|
} |