cavis/libnd4j/include/ops/declarable/generic/loss/softmaxCrossEntropyWithLogi...

141 lines
6.4 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 18.06.2018
//
#include <op_boilerplate.h>
#if NOT_EXCLUDED(OP_softmax_cross_entropy_loss_with_logits)
#include <ops/declarable/CustomOperations.h>
namespace nd4j {
namespace ops {
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(softmax_cross_entropy_loss_with_logits, 2, 1, false, 0, 0) {
auto logits = INPUT_VARIABLE(0);
auto labels = INPUT_VARIABLE(1);
auto output = OUTPUT_VARIABLE(0);
const int classesDim = block.getIArguments()->size() > 0 ? INT_ARG(0) : logits->rankOf()-1;
// input validation
REQUIRE_TRUE(labels->isSameShape(logits), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS OP: labels and logits arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labels).c_str(), ShapeUtils::shapeAsString(logits).c_str());
REQUIRE_TRUE(classesDim < logits->rankOf(), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS OP: class dimension must be smaller than rank of logits, but got %i and %i correspondingly !", classesDim, logits->rankOf());
std::vector<int> dimension = {classesDim};
auto maxAlongDim = logits->reduceAlongDims(reduce::Max, {classesDim}, true);
auto logExp = (*logits - maxAlongDim).transform(transform::Exp);
auto logSoftMax = ( logExp / logExp.reduceAlongDims(reduce::Sum, {classesDim}, true) ).transform(transform::Log);
(-(*labels) * logSoftMax).reduceAlongDimension(reduce::Sum, output, dimension);
return Status::OK();
}
//////////////////////////////////////////////////////////////////////////
DECLARE_TYPES(softmax_cross_entropy_loss_with_logits) {
getOpDescriptor()->setAllowedInputTypes(nd4j::DataType::ANY)->setAllowedOutputTypes({ALL_FLOATS});
}
//////////////////////////////////////////////////////////////////////////
DECLARE_SHAPE_FN(softmax_cross_entropy_loss_with_logits) {
auto logitsShapeInfo = inputShape->at(0);
auto labelsShapeInfo = inputShape->at(1);
const int classesDim = block.getIArguments()->size() > 0 ? INT_ARG(0) : -1;
std::vector<int> dimensions = {classesDim};
// labels and logits must have the same shapes
REQUIRE_TRUE(shape::shapeEquals(logitsShapeInfo, labelsShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS OP: labels and logits arrays must have the same shapes, but got %s and %s correspondingly!", ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(logitsShapeInfo).c_str());
auto outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(logitsShapeInfo));
auto reducedShapeInfo = ShapeUtils::evalReduceShapeInfo(shape::order(labelsShapeInfo), dimensions, labelsShapeInfo, outType, false, false, block.getWorkspace());
return SHAPELIST(reducedShapeInfo);
}
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(softmax_cross_entropy_loss_with_logits_grad, 2, 2, false, 0, 0) {
auto logits = INPUT_VARIABLE(0);
auto labels = INPUT_VARIABLE(1);
auto output = OUTPUT_VARIABLE(0);
auto dLdp = OUTPUT_VARIABLE(0); // dL/dlogits
auto dLdl = OUTPUT_VARIABLE(1); // dL/dlabels
const int classesDim = block.getIArguments()->size() > 0 ? INT_ARG(0) : logits->rankOf()-1;
// input validation
REQUIRE_TRUE(labels->isSameShape(logits), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS_GRAD OP: labels and logits arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labels).c_str(), ShapeUtils::shapeAsString(logits).c_str());
REQUIRE_TRUE(classesDim < logits->rankOf(), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS_GRAD OP: class dimension must be smaller than rank of logits, but got %i and %i correspondingly !", classesDim, logits->rankOf());
std::vector<int> dimension = {classesDim};
NDArray softmax = (*logits - logits->reduceAlongDims(reduce::Max, dimension, true)).transform(transform::Exp);
softmax /= softmax.reduceAlongDims(reduce::Sum, dimension, true);
// dEdp = softmax * sum_i(labels_i) - labels
dLdp->assign(softmax * labels->reduceAlongDims(reduce::Sum, dimension, true) - *labels);
// dEdl = -log(softmax)
(-softmax).applyTransform(transform::Log, dLdl);
return Status::OK();
}
//////////////////////////////////////////////////////////////////////////
DECLARE_TYPES(softmax_cross_entropy_loss_with_logits_grad) {
getOpDescriptor()->setAllowedInputTypes(nd4j::DataType::ANY)->setAllowedOutputTypes({ALL_FLOATS});
}
//////////////////////////////////////////////////////////////////////////
DECLARE_SHAPE_FN(softmax_cross_entropy_loss_with_logits_grad) {
auto logitsShapeInfo = inputShape->at(0);
auto labelsShapeInfo = inputShape->at(1);
// labels and logits must have the same shapes
REQUIRE_TRUE(shape::shapeEquals(logitsShapeInfo, labelsShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS_GRAD OP: labels and logits arrays must have the same shapes, but got %s and %s correspondingly!", ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(logitsShapeInfo).c_str());
DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(logitsShapeInfo));
auto dLdpShapeInfo = ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(outType, shape::order(logitsShapeInfo), shape::shapeOf(logitsShapeInfo), shape::rank(logitsShapeInfo)));
auto dLdlShapeInfo = ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(outType, shape::order(labelsShapeInfo), shape::shapeOf(labelsShapeInfo), shape::rank(labelsShapeInfo)));
return SHAPELIST(dLdpShapeInfo, dLdlShapeInfo);
}
}
}
#endif