cavis/libnd4j/include/loops/cuda/random.cu

448 lines
22 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include <op_boilerplate.h>
#include <loops/random.h>
#include <dll.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <helpers/DebugHelper.h>
#include <specials_cuda.h>
using namespace randomOps;
template <typename T, typename OpClass>
static inline __device__ void randomSingleGeneric(
Nd4jPointer state,
void *z,
Nd4jLong *zShapeBuffer,
void *extraArguments) {
functions::random::RandomFunction<T>::template execTransformCuda<OpClass>(
state,
z,
zShapeBuffer,
extraArguments);
}
template <typename T, typename OpClass>
static inline __device__ void randomDoubleGeneric(
Nd4jPointer state,
void *x,
Nd4jLong *xShapeBuffer,
void *z,
Nd4jLong *zShapeBuffer,
void *extraArguments) {
functions::random::RandomFunction<T>::template execTransformCuda<OpClass>(
state,
x,
xShapeBuffer,
z,
zShapeBuffer,
extraArguments);
}
template <typename T, typename OpClass>
static inline __device__ void randomTripleGeneric(
Nd4jPointer state,
void *x,
Nd4jLong *xShapeBuffer,
void *y,
Nd4jLong *yShapeBuffer,
void *z,
Nd4jLong *zShapeBuffer,
void *extraArguments) {
functions::random::RandomFunction<T>::template execTransformCuda<OpClass>(
state,
x,
xShapeBuffer,
y,
yShapeBuffer,
z,
zShapeBuffer,
extraArguments);
}
#ifndef __CLION_IDE__
// here we generate kernels for target operations
DISPATCH_KERNEL_SIMPLE(randomSingle_, randomSingleGeneric, float, INPUT(Nd4jPointer state, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomSingle_, randomSingleGeneric, double, INPUT(Nd4jPointer state, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomSingle_, randomSingleGeneric, float16, INPUT(Nd4jPointer state, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomSingle_, randomSingleGeneric, bfloat16, INPUT(Nd4jPointer state, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomDouble_, randomDoubleGeneric, float, INPUT(Nd4jPointer state, void *x, Nd4jLong *xShapeBuffer, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomDouble_, randomDoubleGeneric, double, INPUT(Nd4jPointer state, void *x, Nd4jLong *xShapeBuffer, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomDouble_, randomDoubleGeneric, float16, INPUT(Nd4jPointer state, void *x, Nd4jLong *xShapeBuffer, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomDouble_, randomDoubleGeneric, bfloat16, INPUT(Nd4jPointer state, void *x, Nd4jLong *xShapeBuffer, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomTriple_, randomTripleGeneric, float, INPUT(Nd4jPointer state, void *x, Nd4jLong *xShapeBuffer, void *y, Nd4jLong *yShapeBuffer, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomTriple_, randomTripleGeneric, double, INPUT(Nd4jPointer state, void *x, Nd4jLong *xShapeBuffer, void *y, Nd4jLong *yShapeBuffer, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomTriple_, randomTripleGeneric, float16, INPUT(Nd4jPointer state, void *x, Nd4jLong *xShapeBuffer, void *y, Nd4jLong *yShapeBuffer, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomTriple_, randomTripleGeneric, bfloat16, INPUT(Nd4jPointer state, void *x, Nd4jLong *xShapeBuffer, void *y, Nd4jLong *yShapeBuffer, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
#endif
namespace functions {
namespace random {
template<typename T>
template<typename OpClass>
void _CUDA_D RandomFunction<T>::execTransformCuda(Nd4jPointer state, void *vx, Nd4jLong *xShapeBuffer, void *vy, Nd4jLong *yShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<T*>(vx);
auto y = reinterpret_cast<T*>(vy);
auto z = reinterpret_cast<T*>(vz);
auto extraArguments = reinterpret_cast<T*>(vextraArguments);
if (OpClass::requiresSpecial) {
OpClass::specialOpCuda(state, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments);
return;
} else {
__shared__ Nd4jLong length;
__shared__ int xEWS;
__shared__ int yEWS;
__shared__ int zEWS;
__shared__ char xOrder;
__shared__ char yOrder;
__shared__ char zOrder;
__shared__ nd4j::graph::RandomGenerator *buffer;
__shared__ unsigned char *cB;
__shared__ unsigned char *dB;
nd4j::graph::RandomGenerator *devBuffer;
if (threadIdx.x == 0) {
length = shape::length(zShapeBuffer);
xEWS = shape::elementWiseStride(xShapeBuffer);
yEWS = shape::elementWiseStride(yShapeBuffer);
zEWS = shape::elementWiseStride(zShapeBuffer);
xOrder = shape::order(xShapeBuffer);
yOrder = shape::order(yShapeBuffer);
zOrder = shape::order(zShapeBuffer);
extern __shared__ unsigned char shmem[];
buffer = (nd4j::graph::RandomGenerator *) shmem;
cB = shmem;
devBuffer = reinterpret_cast<nd4j::graph::RandomGenerator *> (state);
dB = reinterpret_cast<unsigned char *> (state);
}
__syncthreads();
// using this loop instead of memcpy
for (int e = threadIdx.x; e < sizeof(nd4j::graph::RandomGenerator); e+= blockDim.x) {
cB[e] = dB[e];
}
__syncthreads();
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (xEWS >= 1 && yEWS >= 1 && zEWS >= 1 && xOrder == yOrder && xOrder == zOrder) {
for (Nd4jLong e = tid; e < length; e += blockDim.x * gridDim.x) {
z[e * zEWS] = OpClass::op(x[e * xEWS], y[e * yEWS], e, length, buffer, extraArguments);
}
} else {
for (Nd4jLong i = tid; i < length; i += blockDim.x * gridDim.x) {
auto xOffset2 = shape::getIndexOffset(i, xShapeBuffer, length);
auto yOffset2 = shape::getIndexOffset(i, yShapeBuffer, length);
auto zOffset2 = shape::getIndexOffset(i, zShapeBuffer, length);
z[zOffset2] = OpClass::op(x[xOffset2], y[yOffset2], i, length, buffer, extraArguments);
}
}
}
};
template<typename T>
template<typename OpClass>
void _CUDA_D RandomFunction<T>::execTransformCuda(Nd4jPointer state, void *vx, Nd4jLong *xShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<T*>(vx);
auto z = reinterpret_cast<T*>(vz);
auto extraArguments = reinterpret_cast<T*>(vextraArguments);
__shared__ Nd4jLong length;
__shared__ int xEWS;
__shared__ int zEWS;
__shared__ char xOrder;
__shared__ char zOrder;
__shared__ nd4j::graph::RandomGenerator *buffer;
__shared__ unsigned char *cB;
__shared__ unsigned char *dB;
__shared__ nd4j::graph::RandomGenerator *devBuffer;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
buffer = (nd4j::graph::RandomGenerator *) shmem;
cB = shmem;
devBuffer = reinterpret_cast<nd4j::graph::RandomGenerator *> (state);
dB = reinterpret_cast<unsigned char *> (state);
length = shape::length(zShapeBuffer);
xEWS = shape::elementWiseStride(xShapeBuffer);
zEWS = shape::elementWiseStride(zShapeBuffer);
xOrder = shape::order(xShapeBuffer);
zOrder = shape::order(zShapeBuffer);
}
__syncthreads();
// using this loop instead of memcpy
for (int e = threadIdx.x; e < sizeof(nd4j::graph::RandomGenerator); e+= blockDim.x) {
cB[e] = dB[e];
}
__syncthreads();
if (xEWS >= 1 && zEWS >= 1 && xOrder == zOrder) {
for (Nd4jLong e = blockIdx.x * blockDim.x + threadIdx.x; e < length; e += blockDim.x * gridDim.x) {
z[e * zEWS] = OpClass::op(x[e * xEWS], e, length, buffer, extraArguments);
}
} else {
for (Nd4jLong i = blockIdx.x * blockDim.x + threadIdx.x; i < length; i += blockDim.x * gridDim.x) {
auto xOffset2 = shape::getIndexOffset(i, xShapeBuffer, length);
auto zOffset2 = shape::getIndexOffset(i, zShapeBuffer, length);
z[zOffset2] = OpClass::op(x[xOffset2], i, length, buffer, extraArguments);
}
}
}
template<typename T>
template<typename OpClass>
void _CUDA_D RandomFunction<T>::execTransformCuda(Nd4jPointer state, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
auto z = reinterpret_cast<T*>(vz);
auto extraArguments = reinterpret_cast<T*>(vextraArguments);
__shared__ Nd4jLong length;
__shared__ Nd4jLong ews;
__shared__ nd4j::graph::RandomGenerator *buffer;
__shared__ unsigned char *cB;
__shared__ unsigned char *dB;
__shared__ nd4j::graph::RandomGenerator *devBuffer;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
buffer = (nd4j::graph::RandomGenerator *) shmem;
cB = shmem;
devBuffer = reinterpret_cast<nd4j::graph::RandomGenerator *> (state);
dB = reinterpret_cast<unsigned char *> (state);
length = shape::length(zShapeBuffer);
ews = shape::elementWiseStride(zShapeBuffer);
}
__syncthreads();
// using this loop instead of memcpy
for (int e = threadIdx.x; e < sizeof(nd4j::graph::RandomGenerator); e+= blockDim.x) {
cB[e] = dB[e];
}
__syncthreads();
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (ews > 0) {
for (Nd4jLong i = tid; i < length; i += blockDim.x * gridDim.x) {
z[i * ews] = OpClass::op(i, length, buffer, extraArguments);
}
} else {
for (Nd4jLong i = tid; i < length; i += blockDim.x * gridDim.x) {
auto zOffset2 = shape::getIndexOffset(i, zShapeBuffer, length);
z[zOffset2] = OpClass::op(i, length, buffer, extraArguments);
}
}
}
template <>
_CUDA_H void RandomFunction<float>::executeCudaSingle(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
auto z = reinterpret_cast<float*>(vz);
auto extraArguments = reinterpret_cast<float*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomSingle, float, PARAMS(stateHost, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<float16>::executeCudaSingle(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
auto z = reinterpret_cast<float16*>(vz);
auto extraArguments = reinterpret_cast<float16*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomSingle, float16, PARAMS(stateHost, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<bfloat16>::executeCudaSingle(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
auto z = reinterpret_cast<bfloat16*>(vz);
auto extraArguments = reinterpret_cast<bfloat16*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomSingle, bfloat16, PARAMS(stateHost, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<double>::executeCudaSingle(dim3& launchDims, cudaStream_t *stream, int opNum, Nd4jPointer stateHost, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
auto z = reinterpret_cast<double*>(vz);
auto extraArguments = reinterpret_cast<double*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomSingle, double, PARAMS(stateHost, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<float>::executeCudaDouble(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vx, Nd4jLong *xShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<float*>(vx);
auto z = reinterpret_cast<float*>(vz);
auto extraArguments = reinterpret_cast<float*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomDouble, float, PARAMS(stateHost, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<float16>::executeCudaDouble(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vx, Nd4jLong *xShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<float16*>(vx);
auto z = reinterpret_cast<float16*>(vz);
auto extraArguments = reinterpret_cast<float16*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomDouble, float16, PARAMS(stateHost, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<bfloat16>::executeCudaDouble(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vx, Nd4jLong *xShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<bfloat16*>(vx);
auto z = reinterpret_cast<bfloat16*>(vz);
auto extraArguments = reinterpret_cast<bfloat16*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomDouble, bfloat16, PARAMS(stateHost, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<double>::executeCudaDouble(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vx, Nd4jLong *xShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<double*>(vx);
auto z = reinterpret_cast<double*>(vz);
auto extraArguments = reinterpret_cast<double*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomDouble, double, PARAMS(stateHost, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<float>::executeCudaTriple(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vx, Nd4jLong *xShapeBuffer, void *vy, Nd4jLong *yShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<float*>(vx);
auto y = reinterpret_cast<float*>(vy);
auto z = reinterpret_cast<float*>(vz);
auto extraArguments = reinterpret_cast<float*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomTriple, float, PARAMS(stateHost, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<float16>::executeCudaTriple(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vx, Nd4jLong *xShapeBuffer, void *vy, Nd4jLong *yShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<float16*>(vx);
auto y = reinterpret_cast<float16*>(vy);
auto z = reinterpret_cast<float16*>(vz);
auto extraArguments = reinterpret_cast<float16*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomTriple, float16, PARAMS(stateHost, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<bfloat16>::executeCudaTriple(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vx, Nd4jLong *xShapeBuffer, void *vy, Nd4jLong *yShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<bfloat16*>(vx);
auto y = reinterpret_cast<bfloat16*>(vy);
auto z = reinterpret_cast<bfloat16*>(vz);
auto extraArguments = reinterpret_cast<bfloat16*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomTriple, bfloat16, PARAMS(stateHost, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<double>::executeCudaTriple(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vx, Nd4jLong *xShapeBuffer, void *vy, Nd4jLong *yShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<double*>(vx);
auto y = reinterpret_cast<double*>(vy);
auto z = reinterpret_cast<double*>(vz);
auto extraArguments = reinterpret_cast<double*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomTriple, double, PARAMS(stateHost, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
BUILD_SINGLE_TEMPLATE(template class ND4J_EXPORT RandomFunction, , FLOAT_TYPES);
}
}