29e8e09db6
* initial commit * additional data types & tensor type Signed-off-by: raver119 <raver119@gmail.com> * next step Signed-off-by: raver119 <raver119@gmail.com> * missing include * sparse_to_dense Signed-off-by: raver119 <raver119@gmail.com> * few more tests files Signed-off-by: raver119 <raver119@gmail.com> * draft Signed-off-by: raver119 <raver119@gmail.com> * numeric sparse_to_dense Signed-off-by: raver119 <raver119@gmail.com> * comment Signed-off-by: raver119 <raver119@gmail.com> * string sparse_to_dense version Signed-off-by: raver119 <raver119@gmail.com> * CUDA DataBuffer expand Signed-off-by: raver119 <raver119@gmail.com> * few tweaks for CUDA build Signed-off-by: raver119 <raver119@gmail.com> * shape fn for string_split Signed-off-by: raver119 <raver119@gmail.com> * one more comment Signed-off-by: raver119 <raver119@gmail.com> * string_split indices Signed-off-by: raver119 <raver119@gmail.com> * next step Signed-off-by: raver119 <raver119@gmail.com> * test passes Signed-off-by: raver119 <raver119@gmail.com> * few rearrangements for databuffer implementations Signed-off-by: raver119 <raver119@gmail.com> * DataBuffer: move inline methods to common implementations Signed-off-by: raver119 <raver119@gmail.com> * add native DataBuffer to Nd4j presets Signed-off-by: raver119 <raver119@gmail.com> * DataBuffer creation Signed-off-by: raver119 <raver119@gmail.com> * use DataBuffer for allocation Signed-off-by: raver119 <raver119@gmail.com> * cpu databuffer as deallocatable Signed-off-by: raver119 <raver119@gmail.com> * DataBuffer setters for bufers Signed-off-by: raver119 <raver119@gmail.com> * couple of wrappers Signed-off-by: raver119 <raver119@gmail.com> * DataBuffers being passed around Signed-off-by: raver119 <raver119@gmail.com> * Bunch of ByteBuffer-related signatures gone Signed-off-by: raver119 <raver119@gmail.com> * - few more Nd4j signatures removed - minor fix for bfloat16 Signed-off-by: raver119 <raver119@gmail.com> * nullptr pointer is still a pointer, but 0 as address :) Signed-off-by: raver119 <raver119@gmail.com> * one special test Signed-off-by: raver119 <raver119@gmail.com> * empty string array init Signed-off-by: raver119 <raver119@gmail.com> * one more test in cpp Signed-off-by: raver119 <raver119@gmail.com> * memcpy instead of databuffer swap Signed-off-by: raver119 <raver119@gmail.com> * special InteropDataBuffer for front-end languages Signed-off-by: raver119 <raver119@gmail.com> * few tweaks for java Signed-off-by: raver119 <raver119@gmail.com> * pointer/indexer actualization Signed-off-by: raver119 <raver119@gmail.com> * CustomOp returns list for inputArumgents and outputArguments instead of array Signed-off-by: raver119 <raver119@gmail.com> * redundant call Signed-off-by: raver119 <raver119@gmail.com> * print_variable op Signed-off-by: raver119 <raver119@gmail.com> * - view handling (but wrong one) - print_variable java wrapper Signed-off-by: raver119 <raver119@gmail.com> * one more test Signed-off-by: raver119 <raver119@gmail.com> * - empty arrays handling Signed-off-by: raver119 <raver119@gmail.com> * - deserialization works now Signed-off-by: raver119 <raver119@gmail.com> * minor fix Signed-off-by: raver119 <raver119@gmail.com> * meh Signed-off-by: raver119 <raver119@gmail.com> * one more fix Signed-off-by: raver119 <raver119@gmail.com> * initial cuda commit Signed-off-by: raver119 <raver119@gmail.com> * print_variable message validation Signed-off-by: raver119 <raver119@gmail.com> * CUDA views Signed-off-by: raver119 <raver119@gmail.com> * CUDA special buffer size Signed-off-by: raver119 <raver119@gmail.com> * minor update to match master changes Signed-off-by: raver119 <raver119@gmail.com> * - consider arrays always actual on device for CUDA - additional PrintVariable constructor - CudaUtf8Buffer now allocates host buffer by default Signed-off-by: raver119 <raver119@gmail.com> * meh Signed-off-by: raver119 <raver119@gmail.com> * - print_variable now allows print from device Signed-off-by: raver119 <raver119@gmail.com> * InteropDataBuffer data type fix Signed-off-by: raver119 <raver119@gmail.com> * ... Signed-off-by: raver119 <raver119@gmail.com> * disable some debug messages Signed-off-by: raver119 <raver119@gmail.com> * master pulled in Signed-off-by: raver119 <raver119@gmail.com> * couple of new methods for DataBuffer interop Signed-off-by: raver119 <raver119@gmail.com> * java side Signed-off-by: raver119 <raver119@gmail.com> * offsetted constructor Signed-off-by: raver119 <raver119@gmail.com> * new CUDA deallocator Signed-off-by: raver119 <raver119@gmail.com> * CUDA backend torn apart Signed-off-by: raver119 <raver119@gmail.com> * CUDA backend torn apart 2 Signed-off-by: raver119 <raver119@gmail.com> * CUDA backend torn apart 3 Signed-off-by: raver119 <raver119@gmail.com> * - few new tests - few new methods for DataBuffer management Signed-off-by: raver119 <raver119@gmail.com> * few more tests + few more tweaks Signed-off-by: raver119 <raver119@gmail.com> * two failing tests Signed-off-by: raver119 <raver119@gmail.com> * one more test Signed-off-by: raver119 <raver119@gmail.com> * two failing tests pass Signed-off-by: raver119 <raver119@gmail.com> * now we pass DataBuffer to legacy ops too Signed-off-by: raver119 <raver119@gmail.com> * Native DataBuffer for legacy ops, Java side Signed-off-by: raver119 <raver119@gmail.com> * CPU java side update Signed-off-by: raver119 <raver119@gmail.com> * CUDA java side update Signed-off-by: raver119 <raver119@gmail.com> * no more prepare/register action on java side Signed-off-by: raver119 <raver119@gmail.com> * NDArray::prepare/register use now accepts vectors Signed-off-by: raver119 <raver119@gmail.com> * InteropDataBuffer now has few more convenience methods Signed-off-by: raver119 <raver119@gmail.com> * java bindings update Signed-off-by: raver119 <raver119@gmail.com> * tick device in NativeOps Signed-off-by: raver119 <raver119@gmail.com> * Corrected usage of OpaqueBuffer for tests. * Corrected usage of OpaqueBuffer for java tests. * NativeOpsTests fixes. * print_variable now returns scalar Signed-off-by: raver119 <raver119@gmail.com> * one more test Signed-off-by: raver119 <raver119@gmail.com> * compat_string_split fix for CUDA Signed-off-by: raver119 <raver119@gmail.com> * - CUDA execScalar fix - CUDA lazyAllocateHostPointer now checks java indexer/pointer instead of native pointer Signed-off-by: raver119 <raver119@gmail.com> * legacy ops DataBuffer migration prototype Signed-off-by: raver119 <raver119@gmail.com> * ignore device shapeinfo coming from java Signed-off-by: raver119 <raver119@gmail.com> * minor fix Signed-off-by: raver119 <raver119@gmail.com> * minor transformAny fix Signed-off-by: raver119 <raver119@gmail.com> * minor tweak for lazy host allocation Signed-off-by: raver119 <raver119@gmail.com> * - DataBuffer::memcpy method - bitcast now uses memcpy Signed-off-by: raver119 <raver119@gmail.com> * - IndexReduce CUDA dimension buffer fix Signed-off-by: raver119 <raver119@gmail.com> * views for CPU and CUDA Signed-off-by: raver119 <raver119@gmail.com> * less spam Signed-off-by: raver119 <raver119@gmail.com> * optional memory init Signed-off-by: raver119 <raver119@gmail.com> * async memset Signed-off-by: raver119 <raver119@gmail.com> * - SummaryStats CUDA fix - DataBuffer.sameUnderlyingData() impl - execBroadcast fix Signed-off-by: raver119 <raver119@gmail.com> * - reduce3All fix switch to CUDA 10 temporarily Signed-off-by: raver119 <raver119@gmail.com> * CUDA version Signed-off-by: raver119 <raver119@gmail.com> * proper memory deallocator registration Signed-off-by: raver119 <raver119@gmail.com> * HOST_ONLY workspace allocation Signed-off-by: raver119 <raver119@gmail.com> * temp commit Signed-off-by: raver119 <raver119@gmail.com> * few conflicts resolved Signed-off-by: raver119 <raver119@gmail.com> * few minor fixes Signed-off-by: raver119 <raver119@gmail.com> * one more minor fix Signed-off-by: raver119 <raver119@gmail.com> * NDArray permute should operate on JVM primitives Signed-off-by: raver119 <raver119@gmail.com> * - create InteropDataBuffer for shapes as well - update pointers after view creation in Java Signed-off-by: raver119 <raver119@gmail.com> * - addressPointer temporary moved to C++ Signed-off-by: raver119 <raver119@gmail.com> * CUDA: don't account offset twice Signed-off-by: raver119 <raver119@gmail.com> * CUDA: DataBuffer pointer constructor updated Signed-off-by: raver119 <raver119@gmail.com> * CUDA NDArray.unsafeDuplication() simplified Signed-off-by: raver119 <raver119@gmail.com> * CUDA minor workspace-related fixes Signed-off-by: raver119 <raver119@gmail.com> * CPU DataBuffer.reallocate() Signed-off-by: raver119 <raver119@gmail.com> * print_affinity op Signed-off-by: raver119 <raver119@gmail.com> * print_affinity java side Signed-off-by: raver119 <raver119@gmail.com> * CUDA more tweaks for data locality Signed-off-by: raver119 <raver119@gmail.com> * - compat_string_split tweak - CudaUtf8Buffer update Signed-off-by: raver119 <raver119@gmail.com> * INDArray.close() mechanic restored Signed-off-by: raver119 <raver119@gmail.com> * one more test fixed Signed-off-by: raver119 <raver119@gmail.com> * - CUDA DataBuffer.reallocate() updated - cudaMemcpy (synchronous) restored Signed-off-by: raver119 <raver119@gmail.com> * one last fix Signed-off-by: raver119 <raver119@gmail.com> * bad import removed Signed-off-by: raver119 <raver119@gmail.com> * another small fix Signed-off-by: raver119 <raver119@gmail.com> * one special test Signed-off-by: raver119 <raver119@gmail.com> * fix bad databuffer size Signed-off-by: raver119 <raver119@gmail.com> * release primaryBuffer on replace Signed-off-by: raver119 <raver119@gmail.com> * higher timeout Signed-off-by: raver119 <raver119@gmail.com> * disable timeouts Signed-off-by: raver119 <raver119@gmail.com> * dbCreateView now validates offset and length of a view Signed-off-by: raver119 <raver119@gmail.com> * additional validation for dbExpand Signed-off-by: raver119 <raver119@gmail.com> * restore timeout back again Signed-off-by: raver119 <raver119@gmail.com> * smaller distribution for rng test to prevent timeouts Signed-off-by: raver119 <raver119@gmail.com> * CUDA DataBuffer::memcpy now copies to device all the time Signed-off-by: raver119 <raver119@gmail.com> * OpaqueDataBuffer now contains all required methods for interop Signed-off-by: raver119 <raver119@gmail.com> * some javadoc Signed-off-by: raver119 <raver119@gmail.com> * GC on failed allocations Signed-off-by: raver119 <raver119@gmail.com> * minoe memcpu tweak Signed-off-by: raver119 <raver119@gmail.com> * one more bitcast test Signed-off-by: raver119 <raver119@gmail.com> * - NDArray::deviceId() propagation - special multi-threaded test for data locality checks Signed-off-by: raver119 <raver119@gmail.com> * DataBuffer additional syncStream Signed-off-by: raver119 <raver119@gmail.com> * DataBuffer additional syncStream Signed-off-by: raver119 <raver119@gmail.com> * one ignored test Signed-off-by: raver119 <raver119@gmail.com> * skip host alloc for empty arrays Signed-off-by: raver119 <raver119@gmail.com> * ByteBuffer support is back Signed-off-by: raver119 <raver119@gmail.com> * DataBuffer::memcpy minor fix Signed-off-by: raver119 <raver119@gmail.com> * few minor prelu/bp tweaks Signed-off-by: raver119 <raver119@gmail.com> * nullify-related fixes Signed-off-by: raver119 <raver119@gmail.com> * PReLU fixes (#157) Signed-off-by: Alex Black <blacka101@gmail.com> * Build fixed * Fix tests * one more ByteBuffer signature restored Signed-off-by: raver119 <raver119@gmail.com> * nd4j-jdbc-hsql profiles fix Signed-off-by: raver119 <raver119@gmail.com> * nd4j-jdbc-hsql profiles fix Signed-off-by: raver119 <raver119@gmail.com> * PReLU weight init fix Signed-off-by: Alex Black <blacka101@gmail.com> * Small PReLU fix Signed-off-by: Alex Black <blacka101@gmail.com> * - INDArray.migrate() reactivated - DataBuffer::setDeviceId(...) added - InteropDataBuffer Z syncToDevice added for views Signed-off-by: raver119 <raver119@gmail.com> * missed file Signed-off-by: raver119 <raver119@gmail.com> * Small tweak Signed-off-by: Alex Black <blacka101@gmail.com> * cuda 10.2 Signed-off-by: raver119 <raver119@gmail.com> * minor fix Signed-off-by: raver119 <raver119@gmail.com> Co-authored-by: shugeo <sgazeos@gmail.com> Co-authored-by: Alex Black <blacka101@gmail.com> Co-authored-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> |
||
---|---|---|
.. | ||
project | ||
src | ||
.gitignore | ||
.scalafmt.conf | ||
.travis.yml | ||
LICENSE | ||
README.md | ||
build.sbt | ||
pom.xml | ||
sbt-pom.xml |
README.md
ND4S: Scala bindings for ND4J
ND4S is open-source Scala bindings for ND4J. Released under an Apache 2.0 license.
Main Features
- NDArray manipulation syntax sugar with safer type.
- NDArray slicing syntax, similar with NumPy.
Installation
Install via Maven
ND4S is already included in official Maven repositories.
With IntelliJ, incorporation of ND4S is easy: just create a new Scala project, go to "Project Settings"/Libraries, add "From Maven...", and search for nd4s.
As an alternative, one may simply add the line below to build.sbt
and re-build project.
val nd4jVersion = "1.0.0-alpha"
libraryDependencies += "org.nd4j" % "nd4j-native-platform" % nd4jVersion
libraryDependencies += "org.nd4j" %% "nd4s" % nd4jVersion
One may want to check our maven repository page and replace 1.0.0-alpha
with the latest version.
No need for git-cloning & compiling!
Clone from the GitHub Repo
ND4S is actively developed. You can clone the repository, compile it, and reference it in your project.
Clone the repository:
$ git clone https://github.com/eclipse/deeplearning4j.git
Compile the project:
$ cd nd4s
$ sbt +publish-local
Try ND4S in REPL
The easiest way to play ND4S around is cloning this repository and run the following command.
$ cd nd4s
$ sbt test:console
It starts REPL with importing org.nd4s.Implicits._
and org.nd4j.linalg.factory.Nd4j
automatically. It uses jblas backend at default.
scala> val arr = (1 to 9).asNDArray(3,3)
arr: org.nd4j.linalg.api.ndarray.INDArray =
[[1.00,2.00,3.00]
[4.00,5.00,6.00]
[7.00,8.00,9.00]]
scala> val sub = arr(0->2,1->3)
sub: org.nd4j.linalg.api.ndarray.INDArray =
[[2.00,3.00]
[5.00,6.00]]
CheatSheet(WIP)
ND4S syntax | Equivalent NumPy syntax | Result |
---|---|---|
Array(Array(1,2,3),Array(4,5,6)).toNDArray | np.array(1, 2 , 3], [4, 5, 6) | 1.0, 2.0, 3.0] [4.0, 5.0, 6.0 |
val arr = (1 to 9).asNDArray(3,3) | arr = np.arange(1,10).reshape(3,3) | 1.0, 2.0, 3.0] [4.0, 5.0, 6.0] ,[7.0, 8.0, 9.0 |
arr(0,0) | arr[0,0] | 1.0 |
arr(0,->) | arr[0,:] | [1.0, 2.0, 3.0] |
arr(--->) | arr[...] | 1.0, 2.0, 3.0] [4.0, 5.0, 6.0] ,[7.0, 8.0, 9.0 |
arr(0 -> 3 by 2, ->) | arr[0:3:2,:] | 1.0, 2.0, 3.0] [7.0, 8.0, 9.0 |
arr(0 to 2 by 2, ->) | arr[0:3:2,:] | 1.0, 2.0, 3.0] [7.0, 8.0, 9.0 |
arr.filter(_ > 3) | np.where(arr > 3, arr, 0) | 0.0, 0.0, 0.0] [4.0, 5.0, 6.0] ,[7.0, 8.0, 9.0 |
arr.map(_ % 3) | 1.0, 2.0, 0.0] [1.0, 2.0, 0.0] ,[1.0, 2.0, 0.0 | |
arr.filterBit(_ < 4) | 1.0, 1.0, 1.0] [0.0, 0.0, 0.0] ,[0.0, 0.0, 0.0 | |
arr + arr | arr + arr | 2.0, 4.0, 6.0] [8.0, 10.0, 12.0] ,[14.0, 16.0, 18.0 |
arr * arr | arr * arr | 1.0, 4.0, 9.0] [16.0, 25.0, 36.0] ,[49.0, 64.0, 81.0 |
arr dot arr | np.dot(arr, arr) | 30.0, 36.0, 42.0] [66.0, 81.0, 96.0] ,[102.0, 126.0, 150.0 |
arr.sumT | np.sum(arr) | 45.0 //returns Double value |
val comp = Array(1 + i, 1 + 2 * i).toNDArray | comp = np.array([1 + 1j, 1 + 2j]) | [1.0 + 1.0i ,1.0 + 2.0i] |
comp.sumT | np.sum(comp) | 2.0 + 3.0i //returns IComplexNumber value |
for(row <- arr.rowP if row.get(0) > 1) yield row*2 | 8.00,10.00,12.00] [14.00,16.00,18.00 | |
val tensor = (1 to 8).asNDArray(2,2,2) | tensor = np.arange(1,9).reshape(2,2,2) | [1.00,2.00] [3.00,4.00 5.00,6.00] [7.00,8.00] |
for(slice <- tensor.sliceP if slice.get(0) > 1) yield slice*2 | [10.00,12.00][14.00,16.00] | |
arr(0 -> 3 by 2, ->) = 0 | 0.00,0.00,0.00] [4.00,5.00,6.00] [0.00,0.00,0.00 |