167 lines
7.4 KiB
C++
167 lines
7.4 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2019 Konduit K.K.
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
// Created by Abdelrauf (rauf@konduit.ai) 2020
|
|
|
|
|
|
#include <ops/declarable/PlatformHelper.h>
|
|
#include <ops/declarable/OpRegistrator.h>
|
|
#include <system/platform_boilerplate.h>
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
|
|
|
|
#include "armcomputeUtils.h"
|
|
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace platforms {
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
PLATFORM_IMPL(conv2d, ENGINE_CPU) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
|
|
auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, oC], [oC, iC, kH, kW], [oC, kH, kW, iC]
|
|
auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC]
|
|
|
|
auto output = OUTPUT_VARIABLE(0); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW)
|
|
|
|
int sH = INT_ARG(2); // strides height
|
|
int sW = INT_ARG(3); // strides width
|
|
int pH = INT_ARG(4); // paddings height
|
|
int pW = INT_ARG(5); // paddings width
|
|
int dH = INT_ARG(6); // dilations height
|
|
int dW = INT_ARG(7); // dilations width
|
|
int paddingMode = INT_ARG(8); // 0-VALID, 1-SAME
|
|
bool isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC
|
|
int wFormat = block.getIArguments()->size() > 10 ? INT_ARG(10) : 0; // 0 - [kH, kW, iC, oC], 1 - [oC, iC, kH, kW], 2 - [oC, kH, kW, iC]
|
|
|
|
int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0)); // filter(kernel) height
|
|
int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1)); // filter(kernel) width
|
|
|
|
// Calculate individual paddings
|
|
unsigned int padLeft, padTop, padRight, padBottom;
|
|
int bS, iC, iH, iW, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width;
|
|
int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, 0, *input, *output, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWoC, indWkH, indOoH);
|
|
|
|
ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW, paddingMode);
|
|
int pWSame = (paddingMode == 2 && dW > 1) ? ((oW - 1) * sW + (kW - 1) * dW + 1 - iW) / 2 : pW; // dH == 1 for causal mode in conv1d
|
|
padLeft = pW;
|
|
padTop = pH;
|
|
padRight = (oW - 1) * sW - iW + kW - pWSame ;
|
|
padBottom = (oH - 1) * sH - iH + kH - pH ;
|
|
|
|
|
|
std::vector<Nd4jLong> expectedWeightsShape = ConvolutionUtils::expectWeightsShape(wFormat, kH, kW, iC, oC);
|
|
REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CONV2D ARMCOMPUTE OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str());
|
|
if (bias)
|
|
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CONV2D ARMCOMPUTE OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
|
|
|
|
//conv2dMKLDNN(input, weights, bias, output, kH, kW, sH, sW, pH, pW, dH, dW, paddingMode, isNCHW, wFormat);
|
|
#if 0
|
|
nd4j_printf("conv2d bS = %d, iH =%d, iW = %d, oH=%d, oW=%d kH=%d, kW=%d wformat=%d, iC =%d, , oC=%d\n",
|
|
bS, iH, iW, oH, oW, kH, kW, wFormat, iC, oC
|
|
);
|
|
nd4j_printf("conv2d kH = %d, kW = %d, sH = %d, sW = %d , pH = %d , pW = %d, dH = %d, dW = %d, paddingMode = %d , isNCHW %d \n" , kH , kW , sH , sW , pH
|
|
, pW , dH , dW , paddingMode,isNCHW?1:0 );
|
|
#endif
|
|
|
|
auto dataLayout = isNCHW ? arm_compute::DataLayout::NCHW : arm_compute::DataLayout::NHWC;
|
|
//check weight input datalayout match
|
|
bool dataLayoutMatch = (isNCHW && wFormat == 1) || (!isNCHW && wFormat == 2);
|
|
arm_compute::PermutationVector permuteVector;
|
|
if (!dataLayoutMatch) {
|
|
//lets premute
|
|
if (wFormat == 0) {
|
|
if (isNCHW) {
|
|
#if 0
|
|
nd4j_printf("perm choise %d\n",0);
|
|
#endif
|
|
//reshape
|
|
permuteVector= arm_compute::PermutationVector(2U, 3U, 1U, 0U);
|
|
}
|
|
else {
|
|
#if 0
|
|
nd4j_printf("perm choise %d\n",1);
|
|
#endif
|
|
//reshape
|
|
permuteVector = arm_compute::PermutationVector(1U, 2U, 3U, 0U);
|
|
}
|
|
}
|
|
else if (wFormat == 1) {
|
|
#if 0
|
|
nd4j_printf("perm choise %d\n",2);
|
|
#endif
|
|
permuteVector = arm_compute::PermutationVector(2U, 0U, 1U, 3U);
|
|
}
|
|
else {
|
|
#if 0
|
|
nd4j_printf("perm choise %d\n",3);
|
|
#endif
|
|
permuteVector = arm_compute::PermutationVector(1U, 2U, 0U, 3U);
|
|
}
|
|
}
|
|
else {
|
|
#if 0
|
|
nd4j_printf("perm choise %d\n",4);
|
|
#endif
|
|
//set 0
|
|
permuteVector.set_num_dimensions(0);
|
|
}
|
|
|
|
Arm_WeightsInfo wInfo(false, kW, kH, 1);
|
|
arm_compute::Size2D dilation(dW, dH);
|
|
arm_compute::PadStrideInfo pad(sW, sH, padLeft,padRight, padTop, padBottom, arm_compute::DimensionRoundingType::FLOOR);
|
|
ArmFunctionWeighted<arm_compute::NEConvolutionLayer> conv;
|
|
conv.configure( input, weights, bias, output, dataLayout, permuteVector, pad, wInfo, dilation);
|
|
conv.run(); // run function
|
|
return Status::OK();
|
|
}
|
|
|
|
|
|
PLATFORM_CHECK(conv2d, ENGINE_CPU) {
|
|
|
|
auto input = INPUT_VARIABLE(0);
|
|
auto weights = INPUT_VARIABLE(1);
|
|
auto output = OUTPUT_VARIABLE(0);
|
|
// Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
|
|
auto dTypeInput = getArmType(input->dataType());
|
|
auto dTypeWeight = getArmType(weights->dataType());
|
|
auto dTypeOutput = getArmType(output->dataType());
|
|
|
|
bool isSupported = isArmcomputeFriendly(*input)
|
|
&& isArmcomputeFriendly(*weights)
|
|
&& isArmcomputeFriendly(*output)
|
|
&& (dTypeInput == Arm_DataType::F32 /*|| dTypeInput == Arm_DataType::F16*/)
|
|
&& (dTypeWeight == dTypeInput)
|
|
&& (dTypeOutput == dTypeInput);
|
|
|
|
#if 0
|
|
nd4j_printf("conv2d isArmcomputeFriendly(*input) = %d , isArmcomputeFriendly(*weights) = %d, isArmcomputeFriendly(*output) %d\n",
|
|
isArmcomputeFriendly(*input),isArmcomputeFriendly(*weights),isArmcomputeFriendly(*output));
|
|
#endif
|
|
return isSupported;
|
|
}
|
|
|
|
|
|
|
|
}
|
|
}
|
|
}
|