cavis/libnd4j/include/ops/declarable/helpers/cpu/top_k.cpp

187 lines
9.3 KiB
C++

/* ******************************************************************************
*
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership.
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include <ops/declarable/helpers/top_k.h>
#include <ops/declarable/headers/parity_ops.h>
#include <array/NDArrayFactory.h>
#include <execution/Threads.h>
namespace sd {
namespace ops {
namespace helpers {
template <typename T>
static int topKFunctor_(const NDArray* input, NDArray* values, NDArray* indices, const uint k, bool needSort) {
Nd4jLong width = input->sizeAt(-1);
int lastDim = input->rankOf() - 1;
// ----------------------------------------------------------------------------------------------- //
// this assumption is right:
// if (values->lengthOf() != k * lastDimList->size()) {
// nd4j_printf("top_k: something is wrong. %i expected, but %i given.\n",
// values->lengthOf(), k * lastDimList->size());
// }
// ----------------------------------------------------------------------------------------------- //
std::vector<int> dimsToExclude(input->rankOf() - 1);
for (size_t d = 0; d < dimsToExclude.size(); ++d)
dimsToExclude[d] = d;
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(input->shapeInfo(), dimsToExclude);
if (k == 1) {
for (Nd4jLong e = 0; e < numOfSubArrs; ++e) {
auto trial = (*input)(e, dimsToExclude);
//int maxPos = //lastDimList->at(e)->argMax();
Nd4jLong maxPos = 0;
//trial.printIndexedBuffer("TRIAL:");
T maxVal = trial.e<T>(0);
for (Nd4jLong pos = 1; pos < trial.lengthOf(); pos++)
if (maxVal < trial.e<T>(pos)) {
maxPos = pos;
maxVal = trial.e<T>(pos);
}
if (indices)
indices->p(e, maxPos); //topIndex;
if (values)
values->p(e, maxVal);
}
}
else {
int nextPos = 0;
for (Nd4jLong e = 0; e < numOfSubArrs; ++e) {
auto trial = (*input)(e, dimsToExclude);
// fill up the first k elements
NDArray topValues = NDArrayFactory::create<T>('c', {k}, input->getContext());
NDArray sortedVals = NDArrayFactory::create<T>('c', {k}, input->getContext());
NDArray topIndices = NDArrayFactory::create<Nd4jLong>('c', {k}, input->getContext());
for (uint pos = 0; pos < k; ++pos) {
topIndices.r<Nd4jLong>(pos) = pos;
topValues.r<T>(pos) = trial.t<T>(pos);
}
//std::vector<T> sortedVals(topValues);
sortedVals.assign(topValues);// = NDArrayFactory::create<T>('c', {k});
//std::sort(sortedVals.begin(), sortedVals.end()); // sorted in ascending order
SpecialMethods<T>::sortGeneric(sortedVals.buffer(), sortedVals.shapeInfo(), false);
for (Nd4jLong i = static_cast<Nd4jLong>(k); i < width; ++i) {
T val = trial.e<T>(i);
T minTopVal = sortedVals.t<T>(0);
if (minTopVal < val) { // value should be inserted to top k
// only if it is not contained in
T* begin = reinterpret_cast<T*>(sortedVals.buffer());
T* end = begin + k;
bool exists = std::binary_search(begin, end, val);
if (!exists) {
//exchangePos - a distance between begin and minimal existed to be suppressed by val
T* topBegin = reinterpret_cast<T*>(topValues.buffer());
T* topEnd = topBegin + k;
auto exchangePos = std::distance(topBegin, std::find(topBegin, topEnd, sortedVals.t<T>(0)));
topValues.r<T>(exchangePos) = val; //*exchangeIt = val;
topIndices.r<Nd4jLong>(exchangePos) = i;
sortedVals.r<T>(0) = val; // suppress in sorted
//std::sort(sortedVals.begin(), sortedVals.end()); // sorted in ascending order
SpecialMethods<T>::sortGeneric(sortedVals.buffer(), sortedVals.shapeInfo(), false);
}
}
}
if (needSort) {
SpecialMethods<T>::sortGeneric(topValues.buffer(), topValues.shapeInfo(), true);
for (Nd4jLong j = 0; j < width; j++)
for (uint pos = 0; pos < k; ++pos)
if (topValues.t<T>(pos) == trial.t<T>(j))
topIndices.r<Nd4jLong>(pos) = j;
}
else { // else sort by indices
std::map<Nd4jLong, T> sortValsMap;
//std::vector<std::pair<int, T>> data(topValues.lengthOf());
for (Nd4jLong e = 0; e < topValues.lengthOf(); ++e) {
sortValsMap[topIndices.t<Nd4jLong>(e)] = topValues.t<T>(e);
}
//std::sort(data.begin(), data.end(), [](std::pair<int, T> const& a, std::pair<int, T> const& b) {
// return a.first < b.first;
//});
Nd4jLong e = 0;
for (auto it = sortValsMap.begin(); it != sortValsMap.end(); ++it, e++) {
topIndices.r<Nd4jLong>(e) = it->first;
topValues.r<T>(e) = it->second;
}
}
if (values)
(*values)(e, dimsToExclude).assign(topValues);
if (indices)
(*indices)(e, dimsToExclude).assign(topIndices);
}
//indices->printIndexedBuffer("Indices as is");
}
return Status::OK();
}
// ----------------------------------------------------------------------------------------------- //
template <typename T>
static int inTopKFunctor_(sd::LaunchContext* context, const NDArray* input, const NDArray* target, NDArray* result, const uint k) {
std::vector<Nd4jLong> shapeI(input->rankOf());
for (int i = 0; i < input->rankOf() - 1; i++)
shapeI[i] = input->sizeAt(i);
shapeI[input->rankOf() - 1] = k;
std::unique_ptr<NDArray> indices(NDArrayFactory::create_<Nd4jLong>(input->ordering(), shapeI, context));
NDArray* values = nullptr;
int status = topKFunctor(context, input, values, indices.get(), k, true);
result->assign(0);
if (status == ND4J_STATUS_OK) {
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++) {
bool found = false;
for (uint j = 0; j < k; j++) {
if (target->e<Nd4jLong>(e) == indices->e<Nd4jLong>(e * k + j)) {
found = true;
break;
}
}
if (found)
result->p<bool>(e, true);
}
};
samediff::Threads::parallel_tad(func, 0, target->lengthOf());
}
return status;
}
int topKFunctor(sd::LaunchContext * context, const NDArray* input, NDArray* values, NDArray* indices, const uint k, bool needSort) {
BUILD_SINGLE_SELECTOR(input->dataType(), return topKFunctor_, (input, values, indices, k, needSort), NUMERIC_TYPES);
}
int inTopKFunctor(sd::LaunchContext * context, const NDArray* input, const NDArray* target, NDArray* result, const uint k) {
BUILD_SINGLE_SELECTOR(input->dataType(), return inTopKFunctor_, (context, input, target, result, k), NUMERIC_TYPES);
}
BUILD_SINGLE_TEMPLATE(template int topKFunctor_, (const NDArray* input, NDArray* values, NDArray* indices, const uint k, bool needSort), NUMERIC_TYPES);
BUILD_SINGLE_TEMPLATE(template int inTopKFunctor_, (sd::LaunchContext * context, const NDArray* input, const NDArray* target, NDArray* result, const uint k), NUMERIC_TYPES);
}
}
}