141 lines
5.2 KiB
C++
141 lines
5.2 KiB
C++
/* ******************************************************************************
|
|
*
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* See the NOTICE file distributed with this work for additional
|
|
* information regarding copyright ownership.
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#include <system/op_boilerplate.h>
|
|
#if NOT_EXCLUDED(OP_split_string)
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
#include <helpers/StringUtils.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
CUSTOM_OP_IMPL(compat_string_split, 2, 2, false, 0, 0) {
|
|
auto input = INPUT_VARIABLE(0);
|
|
auto delim = INPUT_VARIABLE(1);
|
|
|
|
auto indices = OUTPUT_NULLIFIED(0);
|
|
auto values = OUTPUT_VARIABLE(1);
|
|
|
|
auto d = delim->e<std::string>(0);
|
|
|
|
input->syncToHost();
|
|
delim->syncToHost();
|
|
|
|
// output rank N+1 wrt input rank
|
|
std::vector<int> icoords(input->rankOf());
|
|
|
|
// getting buffer lengths
|
|
// FIXME: it'll be bigger, since it'll include delimiters,
|
|
auto outputLength = StringUtils::byteLength(*input);
|
|
|
|
uint64_t ss = 0L;
|
|
Nd4jLong ic = 0L;
|
|
// loop through each string within tensor
|
|
for (auto e = 0L; e < input->lengthOf(); e++) {
|
|
// now we should map substring to indices
|
|
auto s = input->e<std::string>(e);
|
|
|
|
// getting base index
|
|
shape::index2coordsCPU(0, e, input->shapeInfo(), icoords.data());
|
|
|
|
// getting number of substrings
|
|
auto cnt = StringUtils::countSubarrays(s.c_str(), s.length(), d.c_str(), d.length()) + 1;
|
|
|
|
// filling output indices
|
|
for (uint64_t f = 0; f < cnt; f++) {
|
|
for (auto v : icoords)
|
|
indices->p(ic++, v);
|
|
|
|
// last index
|
|
indices->p(ic++, f);
|
|
}
|
|
|
|
ss += cnt;
|
|
}
|
|
|
|
// process strings now
|
|
std::vector<std::string> strings;
|
|
for (auto e = 0L; e < input->lengthOf(); e++) {
|
|
auto split = StringUtils::split(input->e<std::string>(e), d);
|
|
|
|
for (const auto& s : split)
|
|
strings.emplace_back(s);
|
|
}
|
|
|
|
// now once we have all strings in single vector time to fill
|
|
auto tmp = NDArrayFactory::string({ (Nd4jLong)strings.size() }, strings, input->dataType(), block.launchContext());
|
|
auto blen = StringUtils::byteLength(tmp) + ShapeUtils::stringBufferHeaderRequirements(strings.size());
|
|
|
|
// for CUDA mostly
|
|
values->dataBuffer()->allocatePrimary();
|
|
values->dataBuffer()->expand(blen);
|
|
memcpy(values->buffer(), tmp.buffer(), blen);
|
|
values->tickWriteHost();
|
|
|
|
// special case, for future use
|
|
indices->syncToDevice();
|
|
values->syncToDevice();
|
|
|
|
// we have to tick buffers
|
|
values->dataBuffer()->writePrimary();
|
|
values->dataBuffer()->readSpecial();
|
|
|
|
return Status::OK();
|
|
};
|
|
|
|
DECLARE_SHAPE_FN(compat_string_split) {
|
|
auto input = INPUT_VARIABLE(0);
|
|
auto delim = INPUT_VARIABLE(1);
|
|
|
|
auto d = delim->e<std::string>(0);
|
|
|
|
// count number of delimiter substrings in all strings within input tensor
|
|
uint64_t cnt = 0;
|
|
for (auto e = 0L; e < input->lengthOf(); e++) {
|
|
// FIXME: bad, not UTF-compatible
|
|
auto s = input->e<std::string>(e);
|
|
|
|
// each substring we see in haystack, splits string in two parts. so we should add 1 to the number of subarrays
|
|
cnt += StringUtils::countSubarrays(s.c_str(), s.length(), d.c_str(), d.length()) + 1;
|
|
}
|
|
|
|
// shape calculations
|
|
// virtual tensor rank will be N+1, for N rank input array, where data will be located at the biggest dimension
|
|
// values tensor is going to be vector always
|
|
// indices tensor is going to be vector with length equal to values.length * output rank
|
|
|
|
auto valuesShape = ConstantShapeHelper::getInstance().vectorShapeInfo(cnt, sd::DataType::UTF8);
|
|
auto indicesShape = ConstantShapeHelper::getInstance().vectorShapeInfo(cnt * (input->rankOf() + 1), sd::DataType::INT64);
|
|
|
|
return SHAPELIST(indicesShape, valuesShape);
|
|
}
|
|
|
|
DECLARE_TYPES(compat_string_split) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes({ ALL_STRINGS })
|
|
->setAllowedOutputTypes(0, { ALL_INDICES })
|
|
->setAllowedOutputTypes(1, { ALL_STRINGS });
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif |