cavis/libnd4j/include/ops/declarable/headers/random.h

102 lines
3.4 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
* Copyright (c) 2019 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#ifndef LIBND4J_HEADERS_RANDOM_H
#define LIBND4J_HEADERS_RANDOM_H
#include <ops/declarable/headers/common.h>
namespace nd4j {
namespace ops {
#if NOT_EXCLUDED(OP_set_seed)
DECLARE_CUSTOM_OP(set_seed, -2, 1, false, 0, -2);
#endif
#if NOT_EXCLUDED(OP_get_seed)
DECLARE_CUSTOM_OP(get_seed, -2, 1, false, 0, 0);
#endif
/*
* random_uniform distribution for types int32,int64, float16, float and double
* by default dtype is float32
*
* input:
* 0 - shape of output (1D int tensor)
* 1 - min val (0D of output type) - optional (0 as default)
* 2 - max val (0D of output type) - optional (inf as default)
*
* output:
* 0 - uniformly distributed values of given type (between min and max)
*/
#if NOT_EXCLUDED(OP_randomuniform)
DECLARE_CUSTOM_OP(randomuniform, 1, 1, false, 0, 0);
#endif
/*
* multinomial (categorical) random generator draws samples from a multinomial distribution
*
* Input array:
* 0 - 2D ndarray with unnormalized log-probabilities with shape [batch_size (N), num_classes (K)]
* 1 - array with one int value of samples number, number of independent samples to draw for each experiment 1,N.
* Int arguments:
* 0 - optional argument, corresponds to dimension with batch_size
* 1 - optional argument, integer type to use for the output. Default int64.
*
* Output array:
* 0 - 2D ndarray with the drawn samples of shape [batch_size, num_samples]
*/
#if NOT_EXCLUDED(OP_random_multinomial)
DECLARE_CUSTOM_OP(random_multinomial, 2, 1, false, 0, 0);
#endif
#if NOT_EXCLUDED(OP_random_normal)
DECLARE_CUSTOM_OP(random_normal, 1, 1, true, 2, 0);
#endif
#if NOT_EXCLUDED(OP_random_bernoulli)
DECLARE_CUSTOM_OP(random_bernoulli, 1, 1, true, 0, 1);
#endif
#if NOT_EXCLUDED(OP_random_exponential)
DECLARE_CUSTOM_OP(random_exponential, 1, 1, true, 1, 0);
#endif
#if NOT_EXCLUDED(OP_random_crop)
DECLARE_CUSTOM_OP(random_crop, 2, 1, false, 0, 0);
#endif
/**
* random_gamma op.
*/
#if NOT_EXCLUDED(OP_random_gamma)
DECLARE_CUSTOM_OP(random_gamma, 2, 1, false, 0, 0);
#endif
/**
* random_poisson op.
*/
#if NOT_EXCLUDED(OP_random_poisson)
DECLARE_CUSTOM_OP(random_poisson, 2, 1, false, 0, 0);
#endif
}
}
#endif