2019-06-06 15:21:15 +03:00

138 lines
5.9 KiB
Java
Executable File

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.nn.weights;
import org.deeplearning4j.nn.conf.distribution.Distribution;
/**
* Weight initialization scheme
* <p>
* <b>DISTRIBUTION</b>: Sample weights from a provided distribution<br>
* <p>
* <b>ZERO</b>: Generate weights as zeros<br>
* <p>
* <b>ONES</b>: All weights are set to 1
* <p>
* <b>SIGMOID_UNIFORM</b>: A version of XAVIER_UNIFORM for sigmoid activation functions. U(-r,r) with r=4*sqrt(6/(fanIn + fanOut))
* <p>
* <b>NORMAL</b>: Normal/Gaussian distribution, with mean 0 and standard deviation 1/sqrt(fanIn).
* This is the initialization recommented in Klambauer et al. 2017, "Self-Normalizing Neural Network". Equivalent to
* DL4J's XAVIER_FAN_IN and LECUN_NORMAL (i.e. Keras' "lecun_normal")
* <p>
* <b>LECUN_UNIFORM</b> Uniform U[-a,a] with a=3/sqrt(fanIn).
* <p>
* <b>UNIFORM</b>: Uniform U[-a,a] with a=1/sqrt(fanIn). "Commonly used heuristic" as per Glorot and Bengio 2010
* <p>
* <b>XAVIER</b>: As per Glorot and Bengio 2010: Gaussian distribution with mean 0, variance 2.0/(fanIn + fanOut)
* <p>
* <b>XAVIER_UNIFORM</b>: As per Glorot and Bengio 2010: Uniform distribution U(-s,s) with s = sqrt(6/(fanIn + fanOut))
* <p>
* <b>XAVIER_FAN_IN</b>: Similar to Xavier, but 1/fanIn -> Caffe originally used this.
* <p>
* <b>XAVIER_LEGACY</b>: Xavier weight init in DL4J up to 0.6.0. XAVIER should be preferred.
* <p>
* <b>RELU</b>: He et al. (2015), "Delving Deep into Rectifiers". Normal distribution with variance 2.0/nIn
* <p>
* <b>RELU_UNIFORM</b>: He et al. (2015), "Delving Deep into Rectifiers". Uniform distribution U(-s,s) with s = sqrt(6/fanIn)
* <p>
* <b>IDENTITY</b>: Weights are set to an identity matrix. Note: can only be used with square weight matrices
* <p>
* <b>VAR_SCALING_NORMAL_FAN_IN</b> Gaussian distribution with mean 0, variance 1.0/(fanIn)
* <p>
* <b>VAR_SCALING_NORMAL_FAN_OUT</b> Gaussian distribution with mean 0, variance 1.0/(fanOut)
* <p>
* <b>VAR_SCALING_NORMAL_FAN_AVG</b> Gaussian distribution with mean 0, variance 1.0/((fanIn + fanOut)/2)
* <p>
* <b>VAR_SCALING_UNIFORM_FAN_IN</b> Uniform U[-a,a] with a=3.0/(fanIn)
* <p>
* <b>VAR_SCALING_UNIFORM_FAN_OUT</b> Uniform U[-a,a] with a=3.0/(fanOut)
* <p>
* <b>VAR_SCALING_UNIFORM_FAN_AVG</b> Uniform U[-a,a] with a=3.0/((fanIn + fanOut)/2)
* <p>
*
* @author Adam Gibson
*/
public enum WeightInit {
DISTRIBUTION, ZERO, ONES, SIGMOID_UNIFORM, NORMAL, LECUN_NORMAL, UNIFORM, XAVIER, XAVIER_UNIFORM, XAVIER_FAN_IN, XAVIER_LEGACY, RELU,
RELU_UNIFORM, IDENTITY, LECUN_UNIFORM, VAR_SCALING_NORMAL_FAN_IN, VAR_SCALING_NORMAL_FAN_OUT, VAR_SCALING_NORMAL_FAN_AVG,
VAR_SCALING_UNIFORM_FAN_IN, VAR_SCALING_UNIFORM_FAN_OUT, VAR_SCALING_UNIFORM_FAN_AVG;
/**
* Create an instance of the weight initialization function
*
* @return a new {@link IWeightInit} instance
*/
public IWeightInit getWeightInitFunction() {
return getWeightInitFunction(null);
}
/**
* Create an instance of the weight initialization function
*
* @param distribution Distribution of the weights (Only used in case DISTRIBUTION)
* @return a new {@link IWeightInit} instance
*/
public IWeightInit getWeightInitFunction(Distribution distribution) {
switch (this) {
case ZERO:
return new WeightInitConstant(0.0);
case ONES:
return new WeightInitConstant(1.0);
case DISTRIBUTION:
return new WeightInitDistribution(distribution);
case SIGMOID_UNIFORM:
return new WeightInitSigmoidUniform();
case LECUN_NORMAL: //Fall through: these 3 are equivalent
case XAVIER_FAN_IN:
case NORMAL:
return new WeightInitNormal();
case UNIFORM:
return new WeightInitUniform();
case XAVIER:
return new WeightInitXavier();
case XAVIER_UNIFORM:
return new WeightInitXavierUniform();
case XAVIER_LEGACY:
return new WeightInitXavierLegacy();
case RELU:
return new WeightInitRelu();
case RELU_UNIFORM:
return new WeightInitReluUniform();
case IDENTITY:
return new WeightInitIdentity();
case LECUN_UNIFORM:
return new WeightInitLecunUniform();
case VAR_SCALING_NORMAL_FAN_IN:
return new WeightInitVarScalingNormalFanIn();
case VAR_SCALING_NORMAL_FAN_OUT:
return new WeightInitVarScalingNormalFanOut();
case VAR_SCALING_NORMAL_FAN_AVG:
return new WeightInitVarScalingNormalFanAvg();
case VAR_SCALING_UNIFORM_FAN_IN:
return new WeightInitVarScalingUniformFanIn();
case VAR_SCALING_UNIFORM_FAN_OUT:
return new WeightInitVarScalingUniformFanOut();
case VAR_SCALING_UNIFORM_FAN_AVG:
return new WeightInitVarScalingUniformFanAvg();
default:
throw new UnsupportedOperationException("Unknown or not supported weight initialization function: " + this);
}
}
}