Oleh 4d81af9fe9
Softmax operation implementation for mkldnn (#286)
* libnd4j first step of softmax mkldnn implementation

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j raw implementation of mkldnn softmax

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j merge master and added softmax to MklDnnTests

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j some corrections for softmax mkldnn

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j merge branch, fixed problem with negative axis, fixed dnnl::memory::format_tag selection, test cases added

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j minor corrections to avoid risk connected with negative axis usage

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j fixed windows builds, added switcher to use mkldnn sofmax version only for 3D, 4D, 5D, 6D arrays

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j fixed dataType selection per request

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j fix for mac and windows builds

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j builds fix

Signed-off-by: Oleg <oleg.semeniv@gmail.com>
2020-03-04 19:36:42 +03:00
2020-02-18 10:29:06 +11:00
2020-02-18 10:29:06 +11:00
2020-01-27 16:03:00 +11:00
2020-02-18 10:29:06 +11:00
2019-11-29 16:31:03 +11:00
2019-11-14 19:38:20 +11:00
2019-06-06 15:21:15 +03:00
2019-06-06 15:21:15 +03:00
2020-01-27 16:03:00 +11:00

Monorepo of Deeplearning4j

Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to deeplearning4j:

To build everything, we can use commands like

./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx

or

mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true

An example of GPU "CC" or compute capability is 61 for Titan X Pascal.

Want some examples?

We have separate repository with various examples available: https://github.com/eclipse/deeplearning4j-examples

In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/eclipse/deeplearning4j-examples/tree/master/tutorials

Description
No description provided
Readme 108 MiB
Languages
Java 62.6%
C++ 25.3%
Cuda 4.6%
Kotlin 3.2%
PureBasic 1.8%
Other 2.3%