179 lines
6.2 KiB
Java
179 lines
6.2 KiB
Java
/*
|
|
* ******************************************************************************
|
|
* *
|
|
* *
|
|
* * This program and the accompanying materials are made available under the
|
|
* * terms of the Apache License, Version 2.0 which is available at
|
|
* * https://www.apache.org/licenses/LICENSE-2.0.
|
|
* *
|
|
* * See the NOTICE file distributed with this work for additional
|
|
* * information regarding copyright ownership.
|
|
* * Unless required by applicable law or agreed to in writing, software
|
|
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* * License for the specific language governing permissions and limitations
|
|
* * under the License.
|
|
* *
|
|
* * SPDX-License-Identifier: Apache-2.0
|
|
* *****************************************************************************
|
|
*/
|
|
|
|
package org.nd4j.linalg.convolution;
|
|
|
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
|
import org.nd4j.linalg.api.ops.impl.transforms.Pad.Mode;
|
|
import org.nd4j.linalg.factory.Nd4j;
|
|
import org.nd4j.linalg.indexing.INDArrayIndex;
|
|
import org.nd4j.linalg.indexing.NDArrayIndex;
|
|
|
|
public class OldConvolution {
|
|
|
|
private OldConvolution() {}
|
|
|
|
/**
|
|
*
|
|
* @param col
|
|
* @param stride
|
|
* @param padding
|
|
* @param height
|
|
* @param width
|
|
* @return
|
|
*/
|
|
public static INDArray col2im(INDArray col, int[] stride, int[] padding, int height, int width) {
|
|
return col2im(col, stride[0], stride[1], padding[0], padding[1], height, width);
|
|
}
|
|
|
|
/**
|
|
* Rearrange matrix
|
|
* columns into blocks
|
|
|
|
* @param col the column
|
|
* transposed image to convert
|
|
* @param sy stride y
|
|
* @param sx stride x
|
|
* @param ph padding height
|
|
* @param pw padding width
|
|
* @param h height
|
|
* @param w width
|
|
* @return
|
|
*/
|
|
public static INDArray col2im(INDArray col, int sy, int sx, int ph, int pw, int h, int w) {
|
|
//number of images
|
|
long n = col.size(0);
|
|
//number of columns
|
|
long c = col.size(1);
|
|
//kernel height
|
|
long kh = col.size(2);
|
|
//kernel width
|
|
long kw = col.size(3);
|
|
//out height
|
|
long outH = col.size(4);
|
|
//out width
|
|
long outW = col.size(5);
|
|
|
|
INDArray img = Nd4j.create(n, c, h + 2L * ph + sy - 1, w + 2L * pw + sx - 1);
|
|
for (int i = 0; i < kh; i++) {
|
|
//iterate over the kernel rows
|
|
long iLim = i + sy * outH;
|
|
for (int j = 0; j < kw; j++) {
|
|
//iterate over the kernel columns
|
|
long jLim = j + sx * outW;
|
|
INDArrayIndex[] indices = new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.all(),
|
|
NDArrayIndex.interval(i, sy, iLim), NDArrayIndex.interval(j, sx, jLim)};
|
|
|
|
INDArray get = img.get(indices);
|
|
|
|
INDArray colAdd = col.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.point(i),
|
|
NDArrayIndex.point(j), NDArrayIndex.all(), NDArrayIndex.all());
|
|
get.addi(colAdd);
|
|
img.put(indices, get);
|
|
|
|
}
|
|
}
|
|
|
|
//return the subset of the padded image relative to the height/width of the image and the padding width/height
|
|
return img.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.interval(ph, ph + h),
|
|
NDArrayIndex.interval(pw, pw + w));
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @param img
|
|
* @param kernel
|
|
* @param stride
|
|
* @param padding
|
|
* @return
|
|
*/
|
|
public static INDArray im2col(INDArray img, int[] kernel, int[] stride, int[] padding) {
|
|
return im2col(img, kernel[0], kernel[1], stride[0], stride[1], padding[0], padding[1], 0, false);
|
|
}
|
|
|
|
/**
|
|
* Implement column formatted images
|
|
* @param img the image to process
|
|
* @param kh the kernel height
|
|
* @param kw the kernel width
|
|
* @param sy the stride along y
|
|
* @param sx the stride along x
|
|
* @param ph the padding width
|
|
* @param pw the padding height
|
|
* @param pval the padding value
|
|
* @param coverAll whether to cover the whole image or not
|
|
* @return the column formatted image
|
|
*
|
|
*/
|
|
public static INDArray im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, int pval,
|
|
boolean coverAll) {
|
|
//number of images
|
|
long n = img.size(0);
|
|
//number of channels (depth)
|
|
long c = img.size(1);
|
|
//image height
|
|
long h = img.size(2);
|
|
//image width
|
|
long w = img.size(3);
|
|
long outHeight = outSize(h, kh, sy, ph, coverAll);
|
|
long outWidth = outSize(w, kw, sx, pw, coverAll);
|
|
INDArray padded = Nd4j.pad(img, new int[][] {{0, 0}, {0, 0}, {ph, ph + sy - 1}, {pw, pw + sx - 1}}, Mode.CONSTANT, pval);
|
|
INDArray ret = Nd4j.create(n, c, kh, kw, outHeight, outWidth);
|
|
for (int i = 0; i < kh; i++) {
|
|
//offset for the row based on the stride and output height
|
|
long iLim = i + sy * outHeight;
|
|
for (int j = 0; j < kw; j++) {
|
|
//offset for the column based on stride and output width
|
|
long jLim = j + sx * outWidth;
|
|
INDArray get = padded.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.interval(i, sy, iLim),
|
|
NDArrayIndex.interval(j, sx, jLim));
|
|
ret.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.point(i),
|
|
NDArrayIndex.point(j), NDArrayIndex.all(), NDArrayIndex.all()}, get);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* The out size for a convolution
|
|
* @param size
|
|
* @param k
|
|
* @param s
|
|
* @param p
|
|
* @param coverAll
|
|
* @return
|
|
*/
|
|
public static int outSize(int size, int k, int s, int p, boolean coverAll) {
|
|
if (coverAll)
|
|
return (size + p * 2 - k + s - 1) / s + 1;
|
|
else
|
|
return (size + p * 2 - k) / s + 1;
|
|
}
|
|
|
|
public static long outSize(long size, long k, long s, long p, boolean coverAll) {
|
|
if (coverAll)
|
|
return (size + p * 2 - k + s - 1) / s + 1;
|
|
else
|
|
return (size + p * 2 - k) / s + 1;
|
|
}
|
|
|
|
}
|