cavis/libnd4j/blas/cuda/NDArray.cu
Alex Black 1170827c18 Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)

* Modified strided_slice op to properly work with empty-like shapes.

* Fixed test for reduce_mean with empty-like input.

* [WIP] Last merge (#15)

* correct logsoftmax looss (#2)

* Small SameDiff listener fix (#4)

* Various fixes (#6)

* #7839 Fix for asXMatrix and tests

* #7866 EmbeddingSequenceLayer dtype fix + test

* #7856 SameDiff save/load stream methods

* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration

* EvaluationBinary 3d/4d

* More evaluation 3d/4d tests

* #7847 Evaluation empty checks

* Small test ifx

* #7848 Fix median edge case

* Improve DL4J samediff layer tests

* [WIP] FastText wrapper implemented (#8)

* FastText implemented

* Some fixes

* Fix shapes for wordsNearest

* Validation of input vectors

* Fixes

* Fixed test

* Thread tagged

* Some tweaks

* setContextClassLoader for DeallocatorServiceThread

* Numpy format tests (#1)

* Various fixes (#11)

* #7852 SameDiff gather fix

* #7892 SameDiff placeholder to constant conversion

* #7890 validate input rank for MLN/CG init methods

* Fix broken permute shape calculation

* Permute and gather fixes

* Tests

* #7850 LogSumExp fix + test

* Handful of test fixes

* Empty arrays with non-scalar shapes (#10)

* minor rearrangements for lambdas

* empty tensors with non-scalar shapes

* numpy empty tensors with non-scalar shapes

* few more empty tweaks

* Small fixes

* conv3d signature update

* micro fix in batchnorm mkldnn

* Import fixes

* Fix

* MKL-DNN update

* Small fill fix

* fill with empty input + test

* Fixes

* Small error improvement

* Fix

* one special test

* couple of fixes for lstm

* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone

* Fixes

* FP16

* Unsigned

* BFloat16

* Fill op - empty tweaks

* - couple of fixes for empty arrays construction
- stack updated

* strided slice fix

* one transform test

* provide method for reducing shapeInfo in case of input array is empty

* Fixed reduceAlongDimensions to use empty input properly.

* couple of broadcast tests

* couple of tests broadcast tests + tweak to make them pass

* add check of non-empty to methods producing sub-arrays

* Fixed reshapeC with zeros in shape.

* complete empty check in reduce_... legacy ops

* Concat and cumsum/prod

* Tweak to empty shape inference on import

* add empty check to the rest of reduce legacy ops

* one more test

* correct typo in evalReduceShapeInfoEmpty

* Added tests for reduce_* ops to tests with zero shapes.

* few more tests for empty reductions

* Fixed strided_slice op with empty case and tests.

* one more empty reduction test

* Fixed strided_slice test.

* add empty check to NDArray::reshapei

* infOrMax

* empty min/max with infinity tests

* made unstack working correctly with empty arrays

* few IndexReduce tests + tweaks for empty shapes

* add test for empty concat

* few tests fixed

* Validation fix for reductions on empty shapes

* Reverse fix

* Reduction shape calc fixes

* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs

* Range fix

* - NDArray constructor updated for scalars/empty arrays
- few tests fixed

* More fixes

* Empty creator fixes

* concat fix

* concat fix

* TF import tests: allow 'both all NaN' and 'both all inf' to pass

* Slice, zero fraction, and reshape fixes

* transpose, gather

* Zero fraction

* scalar cast fix

* Empty reduction axis support

* few more tests fixed

* Fixed input checks conforming with TF for concat op and tests.

* few tests fixed

* matmul scalar shape fix

* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.

* broadcast bool fix

* few more tests

* few more tests

* correct evalReduceShapeInfoEmpty

* argmax/argmin + tests

* one more empty edge case + one more test

* argmax/argmin/realdiv_bp tweaks

* empty reshape test + fix

* Helper fixes

* Small fixes

* Gather test fix

* Gather test fix

* Small fixes

* reduce scalar zero values

* scalar mean workaround

* Remove debug code

* along dim mean workaround

* one more test

* - equalsTo() tweak for empty arrays
- one more test

* broadcast tweaks

* [WIP] Fixing outstanding issues for NLP (#9)

* Avoid using not-inited objects

* Test fixed.

* Redundant method avoided for models like FastText

* KMeans++ implementation

* KMeans++ implementation

* Disable parallel execution

* KMeans++

* Tests

* Dev branch merge (#16)

* SameDiff: convertDataType and gradient check util improvements (#12)

* GradCheck util improvements

* StopGradient constructor + test

* SameDiff: Add datatype conversion

* Javadoc and add DataType.isNumerical()

* Small fix

* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)

* TFGraphTestAllHelper: check intermediates in execution order

* Add missing debug listener

* [WIP] lstmBlock fix + other changes (#13)

- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite

* Small test fix

* CheckNumerics op wrapper

* Fix some issues on master (#17)

* Fix DataVec test issue

* Fix issue with dl4j SameDiff output layer

* Dtype fix for lambda layers

* #7912 BertIterator dtype fix (use float32 not global default)

* [WIP] Next set of CUDA stuff (#7)

New CUDA implementations and improvements

* bad file

* Dev branch master merge (#23)

* SameDiff: convertDataType and gradient check util improvements (#12)

* GradCheck util improvements

* StopGradient constructor + test

* SameDiff: Add datatype conversion

* Javadoc and add DataType.isNumerical()

* Small fix

* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)

* TFGraphTestAllHelper: check intermediates in execution order

* Add missing debug listener

* [WIP] lstmBlock fix + other changes (#13)

- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite

* Small test fix

* CheckNumerics op wrapper

* Compatibility of deserialization (#18)

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* SameDiff: add activation gradient checking support for debugging (#19)

* SameDiff gradient checker: first pass on activation gradient checks

* Fixes + tests for activation gradient checking

* Javadoc

* [WIP] Some nd4j data type corrections (#20)

* Adjust data type

* Set correct Data type.

* Size of proper data type.

* fix averaged cpu load (#22)

* SameDiff ops, TF import and fixes (#24)

* CheckNumerics tests + fixes + misc fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fake quant

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* FakeQuantWithMinMaxArgs

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* CheckNumerics fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Small fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Javadoc

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Exception tweak

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix for out of scope stack allocated var use

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Ignores

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Ignore for known failing test (already logged issue)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Merge upstream to fork (#25)

* Add thousand-separator commas to TotalParams (#7915)

* Add thousand-separator commas to TotalParams

The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.

* Add thousand-separator commas to MultiLayerNetwork

Corresponding change to MultiLayerNetwork

Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>

* Update contributing and issue/PR templates (#7934)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix link to AdaDelta paper (#7942)

Fix link to AdaDelta paper hosted on matthewzeiler.com

Signed-off-by: Jxtps

* Fixes, and ignores for known/logged failing issues (#7943)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* SameDiff + DL4J/SameDiff: Multiple fixes (#28)

* #7919 HDF5 attribute buffer length fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7909 Arbiter constructor exception ux improvements

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7925 RNN output layer length checks

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7939 Add listener for validating inputs are not incorrectly modified

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7939 Integrate NonInplaceValidationListener into tests

* #7844 DL4J SameDiff fixes for variable minibatch size

* DL4J SameDiff fixes - ensure gradient for input placeholder is available

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Tweaks to ExternalErrorsFunction - use placeholders, make more robust

* Another fix

* More fixes

* More SameDiff/DL4J fixes

* Scope out scalar array creation in BaseScalarOp

* Remove debug code

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] Final dev branch merge (#29)

* SameDiff: convertDataType and gradient check util improvements (#12)

* GradCheck util improvements

* StopGradient constructor + test

* SameDiff: Add datatype conversion

* Javadoc and add DataType.isNumerical()

* Small fix

* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)

* TFGraphTestAllHelper: check intermediates in execution order

* Add missing debug listener

* [WIP] lstmBlock fix + other changes (#13)

- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite

* Small test fix

* CheckNumerics op wrapper

* Compatibility of deserialization (#18)

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* SameDiff: add activation gradient checking support for debugging (#19)

* SameDiff gradient checker: first pass on activation gradient checks

* Fixes + tests for activation gradient checking

* Javadoc

* [WIP] Some nd4j data type corrections (#20)

* Adjust data type

* Set correct Data type.

* Size of proper data type.

* fix averaged cpu load (#22)

* [WIP] Multiple dataset iterators (#27)

* Splitting dataset into arbitrary number

* Fixes

* Multiple split of iterator

* Test

* Test

* Some fixes

* signature change

* one more tweak

Signed-off-by: raver119 <raver119@gmail.com>

* one more test for sequential use of DataSetIteratorSplitter

Signed-off-by: raver119 <raver119@gmail.com>

* Fixes

* Fixes

* one more test for Alexander

Signed-off-by: raver119 <raver119@gmail.com>

* Some fixes

* Some fixes

* one more test for Alexander

Signed-off-by: raver119 <raver119@gmail.com>

* minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* Some fixes

* Some fixes

* couple of assertions tweaked

Signed-off-by: raver119 <raver119@gmail.com>

* MDS splitter test :/

Signed-off-by: raver119 <raver119@gmail.com>

* Minor refactoring

* Multi dataset

* Some fixes

* More tests

* Small number of test fixes/improvements (failures on CI) (#31)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] More CUDA stuff (#26)

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* LRN BP CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* less memory

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed bug with crop_and_resize op helper.

* get rid of unnecessary index-calculation dunction

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed sort with nth_element cuda-based helper.

* Refactored nth_element.

* Refactored nth_element op and tests.

* Modified usage of dim array with sortTad routine.

* Refactored main routine of helper for non_max_image_suppression op.

* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.

* fix vol2col cuda kernel

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* topK concept

Signed-off-by: raver119 <raver119@gmail.com>

* unsorted topK with scanWitdh of 1

Signed-off-by: raver119 <raver119@gmail.com>

* correct vol2col tests

* sorted/unsorted topK

Signed-off-by: raver119 <raver119@gmail.com>

* implementation and fixing col2im/col2vol

* Corrected usage flags with input/output with reverse op.

* dup is const now

Signed-off-by: raver119 <raver119@gmail.com>

* percentile op

Signed-off-by: raver119 <raver119@gmail.com>

* group tests for mapool2d

Signed-off-by: Yurii <yurii@skymind.io>

* special test for george

Signed-off-by: raver119 <raver119@gmail.com>

* less threads for sortTad

Signed-off-by: raver119 <raver119@gmail.com>

* provide conv2d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* remove auther in sort tad kernel code

Signed-off-by: Yurii <yurii@skymind.io>

* provide depthwise_conv2d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* - max_pooling_with_argmax
- null check for special use

Signed-off-by: raver119 <raver119@gmail.com>

* dts cuda

Signed-off-by: raver119 <raver119@gmail.com>

* provide sconv2d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* std cuda

Signed-off-by: raver119 <raver119@gmail.com>

* Refactored non_max_suppression op to conform TF implementation.

* Improved suppression helper.

* provide pooling3d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* minor lstm rearrangements

Signed-off-by: raver119 <raver119@gmail.com>

* more of minor lstm rearrangements

Signed-off-by: raver119 <raver119@gmail.com>

* (bi)dynamic_rnn

Signed-off-by: raver119 <raver119@gmail.com>

* templates init order

Signed-off-by: raver119 <raver119@gmail.com>

* Refactored non_max_suppression op.

* Added cuda kernel for non_max_suppression.

* CPU sort by key/value

Signed-off-by: raver119 <raver119@gmail.com>

* CPU sort TAD by key/value

Signed-off-by: raver119 <raver119@gmail.com>

* CPU sort TAD by key/value tests

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminate compiler error with cuda implementation.

* - repaired gradCheck in cuda
- provide conv2d_bp for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* missed signature

Signed-off-by: raver119 <raver119@gmail.com>

* provide depthwise_conv2d_bp for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of lup helper with cuda kernel. Initial commit.

* further work on backprops for convolutions

Signed-off-by: Yurii <yurii@skymind.io>

* CUDA linear sort by key/val

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA tad sort by key/val

Signed-off-by: raver119 <raver119@gmail.com>

* start providing of backprop for pooling2d/3d

Signed-off-by: Yurii <yurii@skymind.io>

* Added atomicAdd for bool datatype.

* dynamic partition concept

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic partition concept

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic partition scalar CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* important comment

Signed-off-by: raver119 <raver119@gmail.com>

* fix pooling2d/3d backprop helpers

Signed-off-by: Yurii <yurii@skymind.io>

* Added non-linear test with dynamic_partition.

* Improved test for dynamic_partition.

* dynamic_partition TAD concept

Signed-off-by: raver119 <raver119@gmail.com>

* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix

Signed-off-by: raver119 <raver119@gmail.com>

* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d

Signed-off-by: Yurii <yurii@skymind.io>

* dynamic_stitch CUDA vector case

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic_stitch CUDA TAD case concept

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic_stitch CUDA TAD case impl

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for dynamic_stitch 3D-4D cases.

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed type check for dynamic stitch.

* min/max bp

Signed-off-by: raver119 <raver119@gmail.com>

* rewrite code for upsampling2d/3d cpu

Signed-off-by: Yurii <yurii@skymind.io>

* reduce min/max/norm_max bp

Signed-off-by: raver119 <raver119@gmail.com>

* lup implementation. Additional enhancements.

* provide code for upsamling2d/3d backprop

Signed-off-by: Yurii <yurii@skymind.io>

* weightedCrossEntropyWithLogits

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed template math atomicMul for 64bit ints.

* Refactored dynamic_partition_bp op.

* inverseBroadcast fix

Signed-off-by: raver119 <raver119@gmail.com>

* DynamicPartitionBP test datatype fixed.

* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA

Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 18:37:04 +03:00

514 lines
23 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
#ifndef NDARRAY_CPP
#define NDARRAY_CPP
#include "../NDArray.h"
#include "../NDArrayFactory.h"
#include "NativeOpExecutioner.h"
#include <memory/Workspace.h>
#include <memory/MemoryRegistrator.h>
#include <ops.h>
#include <ops/gemm.h>
#include <pointercast.h>
#include <stdexcept>
#include <memory>
#include <helpers/logger.h>
#include <loops/pairwise_transform.h>
#include <loops/transform_same.h>
#include <loops/random.h>
#include <loops/broadcasting.h>
#include <indexing/NDIndex.h>
#include <indexing/IndicesList.h>
#include <helpers/ShapeUtils.h>
#include <sstream>
#include <helpers/ArrayUtils.h>
#include <MmulHelper.h>
#include <helpers/threshold.h>
#include <exceptions/datatype_exception.h>
#include <exceptions/cuda_exception.h>
#include <specials_cuda.h>
#include <loops/special_kernels.h>
#include <PointersManager.h>
#include "../NDArray.hpp"
#include <ConstantShapeHelper.h>
namespace nd4j {
void* NDArray::platformBuffer() { return specialBuffer(); }
void* NDArray::getPlatformBuffer() const { return getSpecialBuffer(); }
Nd4jLong* NDArray::getPlatformShapeInfo() const { return getSpecialShapeInfo(); }
Nd4jLong* NDArray::platformShapeInfo() { return specialShapeInfo(); }
void NDArray::syncToDevice() const { _buffer->syncToSpecial(); }
void NDArray::syncToHost() const { _buffer->syncToPrimary(getContext()); }
void NDArray::tickWriteHost() const { _buffer->writePrimary(); }
void NDArray::tickWriteDevice() const { _buffer->writeSpecial(); }
void NDArray::tickReadHost() const { _buffer->readPrimary(); }
void NDArray::tickReadDevice() const { _buffer->readSpecial(); }
void NDArray::tickBothActual() const { _buffer->writePrimary(); _buffer->readSpecial(); }
bool NDArray::isActualOnHostSide() const { return _buffer->isPrimaryActual(); }
bool NDArray::isActualOnDeviceSide() const { return _buffer->isSpecialActual(); }
void NDArray::makeBothBuffersActual() const { if(!isActualOnHostSide()) syncToHost(); if(!isActualOnDeviceSide()) syncToDevice(); }
///////////////////////////////////////////////////////////////////
template<typename T>
__global__ static void fillAsTriangularCuda(const void* vx, const Nd4jLong* xShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const T val, const int lower, const int upper) {
const auto x = reinterpret_cast<const T*>(vx);
auto z = reinterpret_cast<T*>(vz);
__shared__ int zRank, xRank, areSameOffsets; // xRank == zRank always, except when xRank = 1, in this case zRank = 2
__shared__ Nd4jLong zLen, totalThreads, *sharedMem; // xLen == zLen, except when xRank = 1, in this case zLen = 2*xLen
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
areSameOffsets = shape::haveSameShapeAndStrides(xShapeInfo, zShapeInfo);
xRank = shape::rank(xShapeInfo);
zRank = shape::rank(zShapeInfo);
zLen = shape::length(zShapeInfo);
totalThreads = gridDim.x * blockDim.x;
}
__syncthreads();
auto coords = sharedMem + threadIdx.x * zRank;
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < zLen; i += totalThreads) {
shape::index2coords(zRank, shape::shapeOf(const_cast<Nd4jLong*>(zShapeInfo)), i, zLen, coords);
const auto zOffset = shape::getOffset(0, shape::shapeOf(const_cast<Nd4jLong*>(zShapeInfo)), shape::stride(const_cast<Nd4jLong*>(zShapeInfo)), coords, zRank);
// if( (row + upper < col) || (row + lower > col) )
if((coords[zRank - 2] + upper < coords[zRank - 1]) || (coords[zRank - 2] + lower > coords[zRank - 1]))
z[zOffset] = val;
else if(vx != vz) { // when x and z are different arrays
if(xRank != zRank)
coords[0] = coords[1];
const auto xOffset = areSameOffsets ? zOffset : shape::getOffset(0, shape::shapeOf(const_cast<Nd4jLong*>(xShapeInfo)), shape::stride(const_cast<Nd4jLong*>(xShapeInfo)), coords, xRank);
z[zOffset] = x[xOffset];
}
}
}
///////////////////////////////////////////////////////////////////
template<typename T>
void NDArray::fillAsTriangular(const float val, int lower, int upper, const char direction, NDArray* target) {
if (isS())
throw std::runtime_error("NDArray::fillAsTriangular: you can't use this method on String array!");
if(target == nullptr)
target = this;
if(!isSameShape(target) && !(rankOf() == 1 && target->rankOf() == 2 && sizeAt(0) == target->sizeAt(0) && sizeAt(0) == target->sizeAt(1)))
throw std::string("NDArray::fillAsTriangular method: wrong shape of target array !");
if (direction == 'u')
lower = -target->sizeAt(-2);
else if (direction == 'l')
upper = target->sizeAt(-1);
const int threadsPerBlock = MAX_NUM_THREADS / 4;
const int blocksPerGrid = (target->lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = threadsPerBlock * sizeof(decltype(*target->getShapeInfo())) * target->rankOf() + 128;
PointersManager manager(getContext(), "NDArray::fillAsTriangular");
NDArray::prepareSpecialUse({target}, {this});
fillAsTriangularCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *getContext()->getCudaStream()>>>(getPlatformBuffer(), getPlatformShapeInfo(), target->getPlatformBuffer(), target->getPlatformShapeInfo(), static_cast<T>(val), lower, upper);
NDArray::registerSpecialUse({target}, {this});
manager.synchronize();
}
BUILD_SINGLE_TEMPLATE(template void NDArray::fillAsTriangular, (const float val, int lower, int upper, const char direction, NDArray* target), LIBND4J_TYPES);
////////////////////////////////////////////////////////////////////////
template<typename T>
__global__ static void identityMatrixCuda(void* vx, const Nd4jLong* xShapeInfo, const T val) {
auto x = reinterpret_cast<T*>(vx);
__shared__ int rank;
__shared__ Nd4jLong len, totalThreads, *sharedMem; // xLen == zLen, except when xRank = 1, in this case zLen = 2*xLen
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
rank = shape::rank(xShapeInfo);
len = shape::length(xShapeInfo);
totalThreads = gridDim.x * blockDim.x;
}
__syncthreads();
auto coords = sharedMem + threadIdx.x * rank;
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < len; i += totalThreads) {
shape::index2coords(rank, shape::shapeOf(const_cast<Nd4jLong*>(xShapeInfo)), i, len, coords);
const auto offset = shape::getOffset(0, shape::shapeOf(const_cast<Nd4jLong*>(xShapeInfo)), shape::stride(const_cast<Nd4jLong*>(xShapeInfo)), coords, rank);
if(coords[rank - 2] == coords[rank - 1]) // row == col -> on diagonal
x[offset] = val;
else
x[offset] = static_cast<T>(0);
}
}
///////////////////////////////////////////////////////////////////
template<typename T>
static void identityMatrixCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, void* vx, const Nd4jLong *xShapeInfo, const float val) {
identityMatrixCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, static_cast<T>(val));
}
BUILD_SINGLE_TEMPLATE(template void identityMatrixCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, void* vx, const Nd4jLong *xShapeInfo, const float val), LIBND4J_TYPES);
////////////////////////////////////////////////////////////////////////
void NDArray::setIdentity() {
if (isS())
throw std::runtime_error("NDArray::setIdentity: you can't use this method on String array!");
// if (rankOf() != 2)
// throw std::runtime_error("NDArray::setIdentity: method should work only for 2D tensors. But " + toStringValue(rankOf()) + " was given.");
const int threadsPerBlock = MAX_NUM_THREADS / 4;
const int blocksPerGrid = (lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = threadsPerBlock * sizeof(decltype(getShapeInfo())) * rankOf() + 128;
PointersManager manager(getContext(), "NDArray::setIdentity");
syncToDevice();
BUILD_SINGLE_SELECTOR(dataType(), identityMatrixCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, getContext()->getCudaStream(), getPlatformBuffer(), getPlatformShapeInfo(), 1.f), LIBND4J_TYPES);
tickWriteDevice();
manager.synchronize();
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void NDArray::swapUnsafe(NDArray& other) {
auto xType = this->dataType();
if (xType != other.dataType())
throw std::runtime_error("NDArray::swapUnsage method: both arrays must have the same data type");
if(specialBuffer() == nullptr || other.specialBuffer() == nullptr)
throw std::runtime_error("NDArray::swapUnsafe method: input array should not be empty!");
if(lengthOf() != other.lengthOf())
throw std::runtime_error("NDArray::swapUnsafe method: input arrays should have the same length!");
BUILD_SINGLE_SELECTOR(xType, templatedSwapUnsafe, (specialBuffer(), specialShapeInfo(), other.specialBuffer(), other.specialShapeInfo(), getContext()->getCudaStream()), LIBND4J_TYPES);
}
////////////////////////////////////////////////////////////////////////
void NDArray::synchronize(const char* msg) const {
auto res = cudaStreamSynchronize(*(getContext()->getCudaStream()));
if (res != 0)
throw std::runtime_error(msg + std::string(": synchronization failed !"));
}
////////////////////////////////////////////////////////////////////////
void NDArray::prepareSpecialUse(const std::initializer_list<const NDArray*>& writeList, const std::initializer_list<const NDArray*>& readList, bool synchronizeWritables) {
for (const auto& a : readList)
if(a != nullptr)
a->syncToDevice();
for (const auto& a : writeList) {
if (a != nullptr) {
a->getDataBuffer()->allocateSpecial();
if (synchronizeWritables)
a->syncToDevice();
}
}
}
////////////////////////////////////////////////////////////////////////
void NDArray::registerSpecialUse(const std::initializer_list<const NDArray*>& writeList, const std::initializer_list<const NDArray*>& readList) {
for (const auto& p : readList)
if(p != nullptr)
p->tickReadDevice();
for (const auto& p : writeList)
if (p != nullptr)
p->tickWriteDevice();
}
////////////////////////////////////////////////////////////////////////
void NDArray::preparePrimaryUse(const std::initializer_list<const NDArray*>& writeList, const std::initializer_list<const NDArray*>& readList, bool synchronizeWritables) {
for (const auto& a : readList)
if(a != nullptr)
a->syncToHost();
for (const auto& a : writeList) {
if (a != nullptr) {
a->getDataBuffer()->allocatePrimary();
if (synchronizeWritables)
a->syncToHost();
}
}
}
////////////////////////////////////////////////////////////////////////
void NDArray::registerPrimaryUse(const std::initializer_list<const NDArray*>& writeList, const std::initializer_list<const NDArray*>& readList) {
for (const auto& p : readList)
if(p != nullptr)
p->tickReadHost();
for (const auto& p : writeList)
if (p != nullptr)
p->tickWriteHost();
}
//////////////////////////////////////////////////////////////////////////
void NDArray::syncShape() const {
cudaMemcpy(getSpecialShapeInfo(), getShapeInfo(), shape::shapeInfoByteLength(getShapeInfo()), cudaMemcpyHostToDevice);
}
//////////////////////////////////////////////////////////////////////////
void* NDArray::specialBufferWithOffset(Nd4jLong offset) const {
return getSpecialBuffer() != nullptr ? static_cast<int8_t*>(getSpecialBuffer()) + (offset * sizeOfT()) : nullptr;
}
//////////////////////////////////////////////////////////////////////////
// change an array by repeating it the number of times given by reps.
NDArray NDArray::tile(const std::vector<Nd4jLong>& reps) const {
int dim = reps.size();
int product = 1;
for(const auto& item : reps)
product *= item;
if(product == 0)
throw std::runtime_error("NDArray::tile method: one of the elements in reps array is zero !");
int rankOld = rankOf();
int diff = rankOld - dim;
if(product==1) { // in this case 2 possibilities are present: just reshape or nothing to do
NDArray result(*this);
if(diff < 0) { // reshape to higher dimension
std::vector<Nd4jLong> shapeNew = reps; // need to have unities at first "diff" positions of new shape
memcpy(&shapeNew[-diff], result.getShapeInfo()+1, rankOld * sizeof(Nd4jLong)); // put old shape numbers at rest of positions
result.reshapei(ordering(), shapeNew);
}
return result; // nothing to do, if diff >= 0 -> identity tile
}
// evaluate shapeInfo for resulting array
auto newShapeInfo = ShapeUtils::evalTileShapeInfo(*this, reps, getContext()->getWorkspace());
// create new buffer, in any case the memory amount new buffer points to is bigger then those for old _buffer
std::shared_ptr<DataBuffer> newBuff = std::make_shared<DataBuffer>(shape::length(newShapeInfo) * sizeOfT(), dataType(), getContext()->getWorkspace(), true);
// assign new shape and new buffer to resulting array
NDArray result(newBuff, ShapeDescriptor(newShapeInfo), getContext());
// fill newBuff, loop through all elements of newBuff
// looping through getBuffer() goes automatically by means of getSubArrayIndex applying
const auto resultLen = result.lengthOf();
auto xType = this->dataType();
auto stream = getContext()->getCudaStream();
prepareSpecialUse({&result}, {this});
BUILD_SINGLE_SELECTOR(xType, tileKernelH, (this->getSpecialBuffer(), this->getSpecialShapeInfo(), result.getSpecialBuffer(), result.getSpecialShapeInfo(), resultLen, stream), LIBND4J_TYPES);
registerSpecialUse({&result}, {this});
return result;
}
//////////////////////////////////////////////////////////////////////////
// change an array by repeating it the number of times given by reps.
void NDArray::tile(const std::vector<Nd4jLong>& reps, NDArray& target) const {
// evaluate true tile shapeInfo for comparison with target shapeInfo
auto newShapeInfo = ShapeUtils::evalTileShapeInfo(*this, reps, getContext()->getWorkspace());
if(!shape::equalsSoft(newShapeInfo, target.getShapeInfo())) {
throw std::runtime_error("NDArray::tile method - shapeInfo of target array is not suitable for tile operation !");
}
// fill newBuff, loop through all elements of newBuff
// looping through getBuffer() goes automatically by means of getSubArrayIndex applying
const int ews = target.ews();
const int targetLen = target.lengthOf();
auto stream = getContext()->getCudaStream();
prepareSpecialUse({&target}, {this});
BUILD_DOUBLE_SELECTOR(target.dataType(), dataType(), tileKernelHH, (getSpecialBuffer(), getSpecialShapeInfo(), target.getSpecialBuffer(), target.getSpecialShapeInfo(), targetLen, ews, stream), LIBND4J_TYPES, LIBND4J_TYPES);
registerSpecialUse({&target}, {this});
}
//////////////////////////////////////////////////////////////////////////
void NDArray::tile(NDArray& target) const {
if(rankOf() > target.rankOf())
throw std::runtime_error("NDArray::tile method - rank of target array must be bigger or equal to the rank of this array !");
if(!ShapeUtils::areShapesBroadcastable(*this, target))
throw std::runtime_error("NDArray::tile method - shapeInfo of target array is not suitable for tile operation !");
// fill newBuff, loop through all elements of newBuff
// looping through getBuffer() goes automatically by means of getSubArrayIndex applying
const auto ews = target.ews();
const auto targetLen = target.lengthOf();
auto stream = getContext()->getCudaStream();
prepareSpecialUse({&target}, {this});
BUILD_DOUBLE_SELECTOR(target.dataType(), dataType(), tileKernelHH, (getSpecialBuffer(), getSpecialShapeInfo(), target.getSpecialBuffer(), target.getSpecialShapeInfo(), targetLen, ews, stream), LIBND4J_TYPES, LIBND4J_TYPES);
registerSpecialUse({&target}, {this});
}
//////////////////////////////////////////////////////////////////////////
// create new array by repeating it the number of times given by reps
NDArray* NDArray::repeat(int dimension, const std::vector<Nd4jLong>& repeats) const {
auto outShape = ShapeUtils::evalRepeatShape(dimension, repeats, *this);
// the size of outShape == rank
int rank = rankOf(); // = outShape.size()
std::vector<Nd4jLong> newShape(rank);
for (int i = 0; i < rank; i++)
newShape[i] = outShape[i];
auto ret = new NDArray('c', outShape, dataType(), getContext());
auto repeatDelta = shape::prodLong(newShape.data(), rank) / this->lengthOf();
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(rankOf(), {dimension});
const Nd4jLong numTads = ShapeUtils::getNumOfSubArrs(getShapeInfo(), dimsToExclude); //this->tensorsAlongDimension({dimension});
std::vector<int> copy({dimension});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(this->getShapeInfo(), copy);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(ret->getShapeInfo(), copy);
prepareSpecialUse({ret}, {this});
auto stream = getContext()->getCudaStream();
BUILD_SINGLE_SELECTOR(dataType(), repeatKernelH, (getSpecialBuffer(), ret->getSpecialBuffer(), numTads, lengthOf(), ret->lengthOf(), packX.platformShapeInfo(), packX.platformOffsets(), packZ.platformShapeInfo(), packZ.platformOffsets(), *stream), LIBND4J_TYPES);
registerSpecialUse({ret}, {this});
return ret;
}
//////////////////////////////////////////////////////////////////////////
// fill array by repeating it the number of times given by reps
void NDArray::repeat(int dimension, NDArray& target) const {
if(dimension < 0)
dimension += rankOf();
if(rankOf() != target.rankOf())
throw std::invalid_argument("NDArray::repeat(int dimension, NDArray& target) method: wrong rank of target array it must be equal to this array rank!");
Nd4jLong repeatDelta = target.sizeAt(dimension) / sizeAt(dimension);
if(repeatDelta == 0)
throw std::invalid_argument("NDArray::repeat(int dimension, NDArray& target) method: wrong shape of target array!");
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(rankOf(), {dimension});
const Nd4jLong numTads = ShapeUtils::getNumOfSubArrs(getShapeInfo(), dimsToExclude);
std::vector<int> copy({dimension});
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(this->getShapeInfo(), copy);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(target.getShapeInfo(), copy);
NDArray::prepareSpecialUse({&target}, {this});
auto stream = getContext()->getCudaStream();
BUILD_DOUBLE_SELECTOR(target.dataType(), dataType(), repeatKernelHH, (getSpecialBuffer(), target.getSpecialBuffer(), numTads, lengthOf(), packX.platformShapeInfo(), packX.platformOffsets(), packZ.platformShapeInfo(), packZ.platformOffsets(), *stream), LIBND4J_TYPES, LIBND4J_TYPES);
NDArray::registerSpecialUse({&target}, {this});
}
////////////////////////////////////////////////////////////////////////
void* NDArray::specialBuffer() {
if (_buffer->special() == nullptr)
return getBuffer();
// FIXME: this should be fixed once CUDA backend added
return static_cast<int8_t*>(_buffer->special()) + (_offset * sizeOfT());
}
////////////////////////////////////////////////////////////////////////
void* NDArray::getSpecialBuffer() const {
if (_buffer->special() == nullptr)
return getBuffer();
// FIXME: this should be fixed once CUDA backend added
return static_cast<int8_t*>(_buffer->special()) + (_offset * sizeOfT());
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
void NDArray::printCurrentBuffer(const bool host, const char* msg, const int precision) const {
if(_length == 0)
{ printf("NDArray::printActualBuffer: array length is zero !\n"); return; }
if(msg)
printf("%s", msg);
if(host) {
if(getBuffer() == nullptr || _length == 0)
{ printf("NDArray::printActualBuffer: host buffer is nullptr !\n"); return; }
const T* buff = bufferAsT<T>();
for (uint i = 0; i < _length; i++)
printf("%.*f, ", precision, (double)buff[getOffset(i)]);
printf("\n");
}
else {
if(getSpecialBuffer() == nullptr || _length == 0)
{ printf("NDArray::printSpecialBuffer: special buffer is nullptr !\n"); return; }
void* pHost = operator new(sizeof(T) * _length);
if (ews() != 1) {
for (uint i = 0; i < _length; i++)
cudaMemcpyAsync(reinterpret_cast<T*>(pHost) + i, specialBufferWithOffset(i), sizeof(T), cudaMemcpyDeviceToHost, *(getContext()->getCudaStream()));
}
else
cudaMemcpyAsync(pHost, getSpecialBuffer(), sizeOfT() * _length, cudaMemcpyDeviceToHost, *getContext()->getCudaStream());
cudaError_t cudaResult = cudaStreamSynchronize(*getContext()->getCudaStream());
if(cudaResult != 0)
throw std::runtime_error("NDArray::printSpecialBuffer: cudaStreamSynchronize failed!");
for (uint i = 0; i < _length; i++)
printf("%.*f, ", precision, (double)reinterpret_cast<T*>(pHost)[i]);
printf("\n");
operator delete(pHost);
}
}
template void NDArray::printCurrentBuffer<int>(const bool host,const char* msg, const int precision) const;
template void NDArray::printCurrentBuffer<float>(const bool host, const char* msg, const int precision) const;
template void NDArray::printCurrentBuffer<double>(const bool host, const char* msg, const int precision) const;
#if defined(__CUDACC__) && !defined(BUILD_TESTS)
//#include <cpu/NDArrayLambda.hpp>
#endif
} // end namespace nd4j
#endif