cavis/libnd4j/include/ops/declarable/platform/mkldnn/avgpooling3d.cpp

139 lines
8.1 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author saudet
// @author raver119@gmail.com
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <ops/declarable/PlatformHelper.h>
#include <ops/declarable/OpRegistrator.h>
#include <platform_boilerplate.h>
#include <helpers/MKLDNNStream.h>
#include "mkldnnUtils.h"
#include <ops/declarable/helpers/convolutions.h>
using namespace dnnl;
namespace nd4j {
namespace ops {
namespace platforms {
//////////////////////////////////////////////////////////////////////
PLATFORM_IMPL(avgpool3dnew, ENGINE_CPU) {
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
auto output = OUTPUT_VARIABLE(0); // [bS, oD, oH, oW, iC] (NDHWC) or [bS, iC, oD, oH, oW] (NCDHW)
int kD = INT_ARG(0); // filter(kernel) depth
int kH = INT_ARG(1); // filter(kernel) height
int kW = INT_ARG(2); // filter(kernel) width
int sD = INT_ARG(3); // strides depth
int sH = INT_ARG(4); // strides height
int sW = INT_ARG(5); // strides width
int pD = INT_ARG(6); // paddings depth
int pH = INT_ARG(7); // paddings height
int pW = INT_ARG(8); // paddings width
int dD = INT_ARG(9); // dilations depth
int dH = INT_ARG(10); // dilations height
int dW = INT_ARG(11); // dilations width
int paddingMode = INT_ARG(12); // 1-SAME, 0-VALID
int extraParam0 = INT_ARG(13);
int isNCDHW = block.getIArguments()->size() > 14 ? !INT_ARG(14) : 1; // 0-NCDHW, 1-NDHWC
REQUIRE_TRUE(input->rankOf() == 5, 0, "AVGPOOL3DNEW MKLDNN OP: rank of input array must be equal to 5, but got %i instead !", input->rankOf());
REQUIRE_TRUE(dD != 0 && dH != 0 && dW != 0, 0, "AVGPOOL3DNEW MKLDNN OP: dilation must not be zero, but got instead {%i, %i, %i}", dD, dH, dW);
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, *input, *output, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
if(paddingMode) // SAME
ConvolutionUtils::calcPadding3D(pD, pH, pW, oD, oH, oW, iD, iH, iW, kD, kH, kW, sD, sH, sW, dD, dH, dW);
auto mode = (extraParam0 == 0) ? algorithm::pooling_avg_exclude_padding : algorithm::pooling_avg_include_padding;
mkldnnUtils::poolingMKLDNN(input, output, kD,kH,kW, sD,sH,sW, pD,pH,pW, isNCDHW, mode);
return Status::OK();
}
//////////////////////////////////////////////////////////////////////
PLATFORM_CHECK(avgpool3dnew, ENGINE_CPU) {
auto input = INPUT_VARIABLE(0);
auto output = OUTPUT_VARIABLE(0);
return block.isUseMKLDNN() && nd4j::MKLDNNStream::isSupported({input, output});
}
//////////////////////////////////////////////////////////////////////
PLATFORM_IMPL(avgpool3dnew_bp, ENGINE_CPU) {
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
auto gradO = INPUT_VARIABLE(1); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW), epsilon_next
auto gradI = OUTPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW), epsilon
const int kD = INT_ARG(0); // filter(kernel) depth
const int kH = INT_ARG(1); // filter(kernel) height
const int kW = INT_ARG(2); // filter(kernel) width
const int sD = INT_ARG(3); // strides depth
const int sH = INT_ARG(4); // strides height
const int sW = INT_ARG(5); // strides width
int pD = INT_ARG(6); // paddings depth
int pH = INT_ARG(7); // paddings height
int pW = INT_ARG(8); // paddings width
const int dD = INT_ARG(9); // dilations depth
const int dH = INT_ARG(10); // dilations height
const int dW = INT_ARG(11); // dilations width
const int paddingMode = INT_ARG(12); // 1-SAME, 0-VALID
const int extraParam0 = INT_ARG(13); // define what divisor to use while averaging
const int isNCDHW = block.getIArguments()->size() > 14 ? !INT_ARG(14) : 1; // 0-NCDHW, 1-NDHWC
REQUIRE_TRUE(input->rankOf() == 5, 0, "AVGPOOL3DNEW_BP MKLDNN op: input should have rank of 5, but got %i instead", input->rankOf());
REQUIRE_TRUE(dD != 0 && dH != 0 && dW != 0, 0, "AVGPOOL3DNEW_BP MKLDNN op: dilation must not be zero, but got instead {%i, %i, %i}", dD, dH, dW);
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, *input, *gradO, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
std::vector<Nd4jLong> expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,iC,oD,oH,oW, 0,indIOioC,indIOioD,indIOioD+1,indIOioD+2});
REQUIRE_TRUE(gradO->isSameShape(expectedGradOShape), 0, "AVGPOOL3DNEW_BP MKLDNN op: wrong shape of output's gradients array (next epsilon), expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradO).c_str());
if(paddingMode) // SAME
ConvolutionUtils::calcPadding3D(pD, pH, pW, oD, oH, oW, iD, iH, iW, kD, kH, kW, sD, sH, sW, dD, dH, dW);
auto mode = (extraParam0 == 0) ? algorithm::pooling_avg_exclude_padding : algorithm::pooling_avg_include_padding;
mkldnnUtils::poolingBpMKLDNN(input, gradO, gradI, kD,kH,kW, sD,sH,sW, pD,pH,pW, isNCDHW, mode);
return Status::OK();
}
//////////////////////////////////////////////////////////////////////
PLATFORM_CHECK(avgpool3dnew_bp, ENGINE_CPU) {
auto input = INPUT_VARIABLE(0);
auto output = OUTPUT_VARIABLE(0);
return block.isUseMKLDNN() && nd4j::MKLDNNStream::isSupported({input, output});
}
}
}
}