cavis/libnd4j/include/loops/cuda/indexreduce.cu

379 lines
17 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// Created by raver on 4/9/2018.
//
#include <Environment.h>
#include "../indexreduce.h"
#include <op_boilerplate.h>
#include <helpers/DebugHelper.h>
#include <types/types.h>
#include "../legacy_ops.h"
using namespace simdOps;
template <typename X, typename Z>
static __global__ void simpleIndexReduceGeneric(const int op,
void *dx,
Nd4jLong *xShapeInfo, int xRank,
void *extraParams,
void *result,
Nd4jLong *zShapeInfo, int zRank,
int *dimension,
int dimensionLength,
int postProcessOrNot, int *allocationBuffer, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets) {
functions::indexreduce::IndexReduce<X, Z>::transform(op,dx,xShapeInfo,extraParams,result,zShapeInfo,dimension,dimensionLength,postProcessOrNot,allocationBuffer,reductionBuffer,tadOnlyShapeInfo,tadOffsets);
}
namespace functions {
namespace indexreduce {
template <typename X, typename Z>
_CUDA_H void IndexReduce<X,Z>::executeIndexReduceScalar(dim3 launchDims, cudaStream_t *stream,
const int opNum,
void *dx, Nd4jLong *xShapeInfo,
int xRank,
void *extraParams,
void *result, Nd4jLong *zShapeInfo,
int zRank,
int *dimension, int dimensionLength,
int postProcessOrNot,
int *allocationBuffer, void *reductionBuffer,
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets) {
simpleIndexReduceGeneric<X, Z><<<launchDims.x,launchDims.y,launchDims.z, *stream>>>(opNum,
dx, xShapeInfo, xRank,
extraParams,
result, zShapeInfo, 0,
nullptr, 0,
1,
allocationBuffer, reductionBuffer,
tadOnlyShapeInfo, tadOffsets);
}
template <typename X, typename Z>
_CUDA_H void IndexReduce<X, Z>::executeIndexReduce(dim3 launchDims, cudaStream_t *stream, const int opNum, void *dx, Nd4jLong *xShapeInfo, int xRank, void *extraParams, void *result, Nd4jLong *zShapeInfo, int zRank, int *dimension, int dimensionLength, int postProcessOrNot, int *allocationBuffer, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets) {
simpleIndexReduceGeneric<X, Z><<<launchDims.x,launchDims.y,launchDims.z, *stream>>>(
opNum,
dx,
xShapeInfo, xRank,
extraParams,
result,
zShapeInfo, zRank,
dimension,
dimensionLength,
1, allocationBuffer, reductionBuffer, tadOnlyShapeInfo, tadOffsets);
}
// This is the un-specialized struct. Note that we prevent instantiation of this
// struct by putting an undefined symbol in the function body so it won't compile.
template<typename T>
struct SharedIndexValue {
// Ensure that we won't compile any un-specialized types
__device__ T * getPointer() {
extern __device__ void error(void);
error();
return 0;
}
};
// Following are the specializations for the following types.
// int, uint, char, uchar, short, ushort, long long, ulong long, bool, float, and double
// One could also specialize it for user-defined types.
template<>
struct SharedIndexValue<float> {
__device__ IndexValue<float> * getPointer() {
extern __shared__ IndexValue<float> s_int2[];
return s_int2;
}
};
// Following are the specializations for the following types.
// int, uint, char, uchar, short, ushort, long long, ulong long, bool, float, and double
// One could also specialize it for user-defined types.
template<>
struct SharedIndexValue<double> {
__device__ IndexValue<double> * getPointer() {
extern __shared__ IndexValue<double> s_int6[];
return s_int6;
}
};
template <typename X, typename Z>
template <typename OpType>
__device__ void IndexReduce<X, Z>::aggregatePartials(IndexValue<X> **sPartialsRef, Nd4jLong tid, Nd4jLong numElements, void *vextraParams) {
// start the shared memory loop on the next power of 2 less
// than the block size. If block size is not a power of 2,
// accumulate the intermediate sums in the remainder range.
auto extraParams = static_cast<X*>(vextraParams);
IndexValue<X> *sPartials = *sPartialsRef;
Nd4jLong floorPow2 = blockDim.x;
if (floorPow2 & (floorPow2 - 1)) {
while ( floorPow2 & (floorPow2 - 1) ) {
floorPow2 &= floorPow2 - 1;
}
if (tid >= floorPow2) {
IndexValue<X> prev = sPartials[tid - floorPow2];
IndexValue<X> curr = sPartials[tid];
sPartials[tid - floorPow2] = OpType::update(prev,curr,extraParams);
}
__syncthreads();
}
for (int activeThreads = floorPow2 >> 1;activeThreads; activeThreads >>= 1) {
if (tid < activeThreads && tid + activeThreads < numElements) {
IndexValue<X> curr = sPartials[tid];
IndexValue<X> next = sPartials[tid + activeThreads];
sPartials[tid] = OpType::update(curr,next,extraParams);
}
__syncthreads();
}
}
template <typename X, typename Y>
__device__ void IndexReduce<X, Y>::transform(
const int opNum,
void *x,
Nd4jLong *xShapeInfo,
void *extraParams,
void *result,
Nd4jLong *zShapeInfo,
int *dimension,
int dimensionLength,
int postProcessOrNot,
int *allocationBuffer,
void *reductionBuffer,
Nd4jLong *tadShapeInfo,
Nd4jLong *tadOffset) {
DISPATCH_BY_OPNUM_TT(transform, PARAMS(x, xShapeInfo, extraParams, result, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationBuffer, reductionBuffer, tadShapeInfo, tadOffset), INDEX_REDUCE_OPS);
}
template <typename X, typename Z>
template <typename OpType>
__device__ void IndexReduce<X, Z>::transform(void *vdx, Nd4jLong *xShapeInfo,
void *vextraParams,
void *vz, Nd4jLong *zShapeInfo,
int *dimension, int dimensionLength,
int postProcessOrNot,
int *allocationBuffer, void *vreductionBuffer,
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets){
/**int
* Gpu information for the problem
*/
auto dx = reinterpret_cast<X*>(vdx);
auto z = reinterpret_cast<Z*>(vz);
auto extraParams = static_cast<X*>(vextraParams);
auto reductionBuffer = static_cast<X*>(vreductionBuffer);
auto order = shape::order(xShapeInfo);
int tid = blockIdx.x * blockDim.x + threadIdx.x;
__shared__ volatile int resultScalar;
//shared memory space for storing intermediate results
__shared__ IndexValue<X>* sPartials;
if(threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sPartials = reinterpret_cast<IndexValue<X>*>(shmem);
}
__syncthreads();
sPartials[threadIdx.x] = OpType::startingIndexValue(dx);
//length for the tad
__shared__ volatile Nd4jLong xLength;
__shared__ volatile Nd4jLong zLen;
//only compute the tad indexes once
IndexValue<X> reduction = OpType::startingIndexValue(dx);
if (threadIdx.x == 0) {
if (zShapeInfo != nullptr)
zLen = shape::length(zShapeInfo);
else zLen = 1;
if (dimensionLength == 1) {
if (zLen == 1 && (dimension == nullptr || dimension[0] == MAX_DIMENSION))
resultScalar = 1;
else
resultScalar = 0;
}
else
resultScalar = 0;
if (zLen == 1)
resultScalar = 1;
xLength = shape::length(xShapeInfo);
}
__syncthreads();
if(nd4j::ArrayOptions::arrayType(xShapeInfo) == nd4j::ArrayType::EMPTY) {
if(nd4j::ArrayOptions::arrayType(zShapeInfo) == nd4j::ArrayType::EMPTY)
return;
for (uint i = blockIdx.x * blockDim.x + threadIdx.x; i < zLen; i += gridDim.x * blockDim.x)
z[i] = (Z) reduction.index;
return;
}
if (!resultScalar) {
__shared__ Nd4jLong tadLength;
__shared__ int tadEWS;
__shared__ int numTads;
if (threadIdx.x == 0) {
tadLength = shape::length(tadOnlyShapeInfo);
tadEWS = shape::elementWiseStride(tadOnlyShapeInfo);
numTads = shape::length(xShapeInfo) / tadLength;
}
__syncthreads();
if (dimensionLength > 1 || tadEWS < 1) {
for (int r = blockIdx.x; r < numTads; r += gridDim.x) {
auto tadOffsetForBlock = tadOffsets[r];
sPartials[threadIdx.x] = OpType::startingIndexValue(dx);
for(int i = threadIdx.x;i < tadLength; i += blockDim.x) {
auto xOffset = tadOffsetForBlock + shape::getIndexOffset(i, tadOnlyShapeInfo);
IndexValue<X> comp {dx[xOffset], i};
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], comp, extraParams);
}
__syncthreads();
aggregatePartials<OpType>(&sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, tadLength),extraParams);
__syncthreads();
if (threadIdx.x == 0) {
z[r] = (Z) sPartials[threadIdx.x].index;
}
__syncthreads();
}
} else {
for(int i = blockIdx.x; i < numTads; i+= gridDim.x) {
Nd4jLong tadOffsetForBlock = tadOffsets[i];
sPartials[threadIdx.x] = OpType::startingIndexValue(dx);
for (int x = threadIdx.x; x < tadLength; x+= blockDim.x) {
IndexValue<X> comp {dx[tadOffsetForBlock + x * tadEWS], x};
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], comp, extraParams);
}
__syncthreads();
aggregatePartials<OpType>(&sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, tadLength),extraParams);
__syncthreads();
if (threadIdx.x == 0) {
z[i] = (Z) sPartials[threadIdx.x].index; //postProcess(sPartials[0],tadLength ,extraParams);
}
__syncthreads();
}
}
} else {
auto n = shape::length(xShapeInfo);
auto xElementWiseStride = shape::elementWiseStride(xShapeInfo);
if(xElementWiseStride >= 1 && order == 'c') {
for(Nd4jLong i = tid;i < n; i += (blockDim.x * gridDim.x)) {
IndexValue<X> indexVal = {dx[i * xElementWiseStride], i};
reduction = OpType::update(reduction, indexVal, extraParams);
}
} else {
for(Nd4jLong i = tid;i < n; i += blockDim.x * gridDim.x) {
auto offset = shape::getIndexOffset(i, xShapeInfo);
IndexValue<X> indexVal = {dx[offset], i};
reduction = OpType::update(reduction, indexVal, extraParams);
}
}
sPartials[threadIdx.x] = reduction;
__syncthreads();
aggregatePartials<OpType>(&sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, (int) n),extraParams);
__syncthreads();
if (gridDim.x > 1) {
__shared__ bool amLast;
unsigned int *tc = (unsigned int *) reductionBuffer;
tid = threadIdx.x;
if (threadIdx.x == 0) {
auto pBuffer = reinterpret_cast<IndexValue<X> *>(reductionBuffer);
pBuffer[blockIdx.x] = {sPartials[0].value, sPartials[0].index};
}
__threadfence();
__syncthreads();
if (tid==0) {
unsigned int ticket = atomicInc(&tc[16384], gridDim.x);
amLast = (ticket == gridDim.x-1);
}
__syncthreads();
if (amLast) {
tc[16384] = 0;
IndexValue<X> *pBuffer = (IndexValue<X> *) reductionBuffer;
sPartials[threadIdx.x] = OpType::startingIndexValue(dx);
for (Nd4jLong i = threadIdx.x; i < gridDim.x; i += blockDim.x) {
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], pBuffer[i], extraParams);
}
__syncthreads();
aggregatePartials<OpType>(&sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(gridDim.x, blockDim.x),extraParams);
__syncthreads();
if (tid == 0) {
z[0] = (Z) sPartials[0].index;
}
}
} else {
if (tid == 0) {
auto tc = reinterpret_cast<unsigned int *>(reductionBuffer);
tc[16384] = 0;
z[0] = (Z) sPartials[0].index;
}
}
}
}
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT IndexReduce, , LIBND4J_TYPES, INDEXING_TYPES);
}
}