156 lines
5.7 KiB
C++
156 lines
5.7 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 16.07.2018
|
|
//
|
|
|
|
#include <GradCheck.h>
|
|
#include <NDArrayFactory.h>
|
|
|
|
|
|
namespace nd4j {
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void GradCheck::fillGradArrays(const LossFunc loss, const std::vector<NDArray*>& gradArrs) {
|
|
|
|
const int numInGradArrs = gradArrs.size();
|
|
|
|
// fill input gradient arrays in accordance to type of loss function
|
|
switch(loss) {
|
|
|
|
case MEAN:
|
|
for(int i = 0; i < numInGradArrs; ++i)
|
|
*gradArrs[i] = 1. / gradArrs[i]->lengthOf();
|
|
break;
|
|
|
|
case SUM:
|
|
for(int i = 0; i < numInGradArrs; ++i)
|
|
*gradArrs[i] = 1.;
|
|
break;
|
|
|
|
default:
|
|
throw std::invalid_argument("GradCheck::fillGradArrays: invalid type of loss function !");
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
bool GradCheck::checkGrad(ops::DeclarableOp& opFF, ops::DeclarableOp& opBP, const OpArgsHolder& argsHolderFF, const OpArgsHolder& argsHolderBP,
|
|
const std::vector<bool>& whatArrsToCheck, const std::vector<double>& idxRange, const LossFunc loss ) {
|
|
|
|
const int numInArrsFF = argsHolderFF.getNumInArrs(); // at the same time numInArrsFF = number of output arrays in opBP
|
|
const int numInGradArrsBP = argsHolderBP.getNumInArrs() - numInArrsFF; // because argsHolderBP.getNumInArrs() = numInArrsFF + numInGradArrsBP
|
|
const std::vector<NDArray*>& inArrsFF = argsHolderFF.getInArrs();
|
|
const std::vector<NDArray*>& inArrsBP = argsHolderBP.getInArrs();
|
|
|
|
// fill input gradient arrays in accordance to kind of loss function
|
|
fillGradArrays(loss, std::vector<NDArray*>(&inArrsBP[numInArrsFF], &inArrsBP[numInArrsFF + numInGradArrsBP]));
|
|
|
|
// back prop pass
|
|
ResultSet* outArrsBP = opBP.execute(argsHolderBP); // number of output arrays in back prop = numInArrsFF;
|
|
|
|
NDArray tmpScalar(nd4j::DataType::DOUBLE, inArrsFF[0]->getContext()); // scalar = 0
|
|
|
|
for(int i = 0; i < numInArrsFF; ++i) { // loop through input array
|
|
|
|
if(!whatArrsToCheck.empty() && static_cast<bool>(whatArrsToCheck[i]) == false)
|
|
continue;
|
|
|
|
const Nd4jLong idxStart = static_cast<Nd4jLong>(idxRange[0] * inArrsFF[i]->lengthOf());
|
|
const Nd4jLong idxEnd = static_cast<Nd4jLong>(idxRange[1] * inArrsFF[i]->lengthOf());
|
|
|
|
for(Nd4jLong j = idxStart; j < idxEnd; ++j) { // loop through all elements for current array
|
|
|
|
const double orig = inArrsFF[i]->e<double>(j);
|
|
|
|
// add epsilon, feed forward
|
|
inArrsFF[i]->p<double>(j, orig + EPSILON);
|
|
ResultSet* outArrsFF = opFF.execute(argsHolderFF);
|
|
int numOutArrs = outArrsFF->size();
|
|
double scorePlus = 0.;
|
|
|
|
for(int k = 0; k < numOutArrs; ++k) { // loop through output arrays
|
|
if(loss == SUM)
|
|
outArrsFF->at(k)->reduceNumber(reduce::Sum, tmpScalar);
|
|
else
|
|
outArrsFF->at(k)->reduceNumber(reduce::Mean, tmpScalar);
|
|
scorePlus += tmpScalar.e<double>(0);
|
|
}
|
|
delete outArrsFF;
|
|
|
|
// subtract epsilon, feed forward
|
|
inArrsFF[i]->p<double>(j, orig - EPSILON);
|
|
outArrsFF = opFF.execute(argsHolderFF);
|
|
double scoreMinus = 0.;
|
|
|
|
for(int k = 0; k < numOutArrs; ++k) { // loop through output arrays
|
|
if(loss == SUM)
|
|
outArrsFF->at(k)->reduceNumber(reduce::Sum, tmpScalar);
|
|
else
|
|
outArrsFF->at(k)->reduceNumber(reduce::Mean, tmpScalar);
|
|
scoreMinus += tmpScalar.e<double>(0);
|
|
}
|
|
delete outArrsFF;
|
|
|
|
// restore initial element value
|
|
inArrsFF[i]->p<double>(j, orig);
|
|
|
|
// calculate numerical gradient
|
|
const double numericalGrad = (scorePlus - scoreMinus) / (2 * EPSILON);
|
|
if(std::isnan(numericalGrad) || std::isinf(numericalGrad)) {
|
|
printf("GradCheck::checkGrad: got wrong value for numerical gradient for input array # %i and its element at position %lld ! \n", i, j);
|
|
throw std::runtime_error("");
|
|
}
|
|
|
|
// get analytical gradient
|
|
const double analyticGrad = outArrsBP->at(i)->e<double>(j);
|
|
if(std::isnan(analyticGrad) || std::isinf(analyticGrad)) {
|
|
printf("GradCheck::checkGrad: got wrong value for analytical gradient for input array # %i and its element at position %lld ! \n", i, j);
|
|
throw std::runtime_error("");
|
|
}
|
|
|
|
// printf("num = %.5f, ana = %.5f\n", numericalGrad, analyticGrad);
|
|
|
|
// calculate relative error
|
|
double relError;
|
|
if(numericalGrad == 0. && analyticGrad == 0.)
|
|
relError = 0.;
|
|
else
|
|
relError = math::nd4j_abs<double>(analyticGrad - numericalGrad) / (math::nd4j_abs<double>(analyticGrad) + math::nd4j_abs<double>(numericalGrad));
|
|
|
|
// verify result
|
|
if(relError > MAXRELERR || std::isnan(relError)) {
|
|
|
|
if(math::nd4j_abs<double>(analyticGrad - numericalGrad) < MINABSERR)
|
|
continue;
|
|
printf("numericalGrad = %f, analyticGrad = %f \n", numericalGrad, analyticGrad);
|
|
printf("GradCheck::checkGrad: got RELERROR = %f > MAXRELERROR(%f) for input array # %i and its element at position %lld ! \n", relError, MAXRELERR, i, j);
|
|
delete outArrsBP;
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
delete outArrsBP;
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|