101 lines
3.8 KiB
C++
101 lines
3.8 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
* Copyright (c) 2019 Konduit K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
#ifndef LIBND4J_GAMMAMATHFUNC_H
|
|
#define LIBND4J_GAMMAMATHFUNC_H
|
|
|
|
#include <ops/declarable/helpers/helpers.h>
|
|
#include "array/NDArray.h"
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
// calculate the digamma function for each element for array
|
|
void diGamma(sd::LaunchContext* context, const NDArray& x, NDArray& z);
|
|
|
|
// calculate the polygamma function
|
|
void polyGamma(sd::LaunchContext* context, const NDArray& n, const NDArray& x, NDArray& z);
|
|
|
|
// calculate the digamma function for one element
|
|
// implementation is based on serial representation written in terms of the Hurwitz zeta function as polygamma = (-1)^{n+1} * n! * zeta(n+1, x)
|
|
template <typename T>
|
|
_CUDA_HD T diGammaScalar(T x) {
|
|
|
|
const int xInt = static_cast<int>(x);
|
|
|
|
// negative and zero
|
|
if(x <= 0) {
|
|
if(x == xInt) // integer
|
|
return DataTypeUtils::infOrMax<T>();
|
|
else
|
|
return diGammaScalar<T>(1 - x) - M_PI / sd::math::nd4j_tan<T,T>(M_PI * x); // use reflection formula psi(1-x) = psi(x) + pi*cot(pi*x)
|
|
}
|
|
|
|
// positive integer
|
|
if(x == xInt && xInt <= 20) { // psi(n) = -Euler_Mascheroni_const + sum_from_k=1_to_n-1( 1/k ), for n = 1,2,3,...inf, we use this formula only for n <= 20 to avoid time consuming sum calculation for bigger n
|
|
T result = -0.577215664901532;
|
|
for (uint i = 1; i <= xInt - 1; ++i) {
|
|
result += static_cast<T>(1) / i;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// positive half-integer
|
|
if(x - xInt == 0.5 && xInt <= 20) { // psi(n+0.5) = -Euler_Mascheroni_const - 2*ln(2) + sum_from_k=1_to_n( 2/(2*k-1) ) , for n = 1,2,3,...inf, we use this formula only for n <= 20 to avoid time consuming sum calculation for bigger n
|
|
T result = -0.577215664901532 - 2 * sd::math::nd4j_log<T,T>(2);
|
|
for (uint i = 1; i <= xInt; ++i) {
|
|
result += static_cast<T>(2) / (2*i - 1);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// positive, smaller then 5; we should use number > 5 in order to have satisfactory accuracy in asymptotic expansion
|
|
if(x < 5)
|
|
return diGammaScalar<T>(1 + x) - static_cast<T>(1) / x; // recurrence formula psi(x) = psi(x+1) - 1/x.
|
|
|
|
// *** other positive **** //
|
|
|
|
// truncated expansion formula (from wiki)
|
|
// psi(x) = log(x) - 1/(2*x) - 1/(12*x^2) + 1/(120*x^4) - 1/(252*x^6) + 1/(240*x^8) - 5/(660*x^10) + 691/(32760*x^12) - 1/(12*x^14) + ...
|
|
|
|
if(x >= (sizeof(T) > 4 ? 1.e16 : 1.e8)) // if x is too big take into account only log(x)
|
|
return sd::math::nd4j_log<T,T>(x);
|
|
|
|
// coefficients used in truncated asymptotic expansion formula
|
|
const T coeffs[7] = {-(T)1/12, (T)1/120, -(T)1/252, (T)1/240, -(T)5/660, (T)691/32760, -(T)1/12};
|
|
// const T coeffs[7] = {-0.0833333333333333, 0.00833333333333333, -0.00396825396825397, 0.00416666666666667, -0.00757575757575758, 0.0210927960927961, -0.0833333333333333};
|
|
|
|
const T x2Inv = static_cast<T>(1) / (x * x);
|
|
T result = 0;
|
|
|
|
for (int i = 6; i >= 0; --i)
|
|
result = (result + coeffs[i]) * x2Inv;
|
|
return result + sd::math::nd4j_log<T,T>(x) - static_cast<T>(0.5) / x;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#endif //LIBND4J_GAMMAMATHFUNC_H
|