137 lines
6.1 KiB
Plaintext
137 lines
6.1 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author sgazeos@gmail.com
|
|
//
|
|
|
|
#include <ops/declarable/helpers/fake_quantization.h>
|
|
#include <array/NDArrayFactory.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace helpers {
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// fakeQuantWithMinMaxVars_
|
|
// input - input tensor
|
|
// min - min scalar tensor
|
|
// max - max scalar tensor
|
|
// numBits - (default 16bit)
|
|
// narrowed - shrink is true
|
|
// output - output tensor
|
|
//
|
|
template <typename T>
|
|
static __host__ __device__ void
|
|
nudge(T min, T max, int quantMin, int quantMax, T* scale, T* nudgedMin, T* nudgedMax) {
|
|
T quantMaxF = static_cast<T>(quantMax);
|
|
T quantMinF = static_cast<T>(quantMin);
|
|
*scale = (max - min) / (quantMaxF - quantMinF);
|
|
auto zeroPointFromMin = quantMinF - min / *scale;
|
|
uint16_t const nudgedZeroPoint = [zeroPointFromMin, quantMin, quantMax, quantMaxF, quantMinF] {
|
|
if (zeroPointFromMin < quantMinF) {
|
|
return static_cast<uint16_t>(quantMin);
|
|
}
|
|
if (zeroPointFromMin > quantMaxF) {
|
|
return static_cast<uint16_t>(quantMax);
|
|
}
|
|
return sd::math::nd4j_round<T,uint16_t>(zeroPointFromMin);
|
|
}();
|
|
*nudgedMax = (quantMaxF - static_cast<T>(nudgedZeroPoint)) * (*scale);
|
|
*nudgedMin = (quantMinF - static_cast<T>(nudgedZeroPoint)) * (*scale);
|
|
}
|
|
|
|
template <typename T>
|
|
void fakeQuantWithMinMaxVars_(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
|
int lowIntBound = narrowed?1:0;
|
|
int upperIntBound = (1 << numBits) - 1;
|
|
min->syncToHost(); // these are scalars, so nothing much happened
|
|
max->syncToHost();
|
|
T scale, nudgedMin, nudgedMax;
|
|
nudge(min->t<T>(0), max->t<T>(0), lowIntBound, upperIntBound, &scale, &nudgedMin, &nudgedMax);
|
|
|
|
auto wiseMinMaxAndSoOn = LAMBDA_T(x, nudgedMin, nudgedMax, scale) {
|
|
T val = x;
|
|
if (x < nudgedMin) {
|
|
val = nudgedMin;
|
|
}
|
|
else if (x > nudgedMax) {
|
|
val = nudgedMax;
|
|
}
|
|
else
|
|
val = x;
|
|
return (math::nd4j_floor<T,T>((val - nudgedMin) / scale + T(0.5)) * scale + nudgedMin);
|
|
};
|
|
|
|
input->applyLambda(wiseMinMaxAndSoOn, *output);
|
|
}
|
|
|
|
template <typename T>
|
|
static __global__ void fakeQuantWithMinMaxKernel(const T* input, const Nd4jLong* inputShape,
|
|
T* min, T* max,
|
|
int lowIntBound, int upperIntBound, Nd4jLong channels,
|
|
T* output, const Nd4jLong* outputShape,
|
|
Nd4jLong length) {
|
|
__shared__ int block;
|
|
if (threadIdx.x == 0) {
|
|
block = length / channels; // to loop with last dimension as block
|
|
}
|
|
__syncthreads();
|
|
|
|
for (auto i = blockIdx.x; i < (int)channels; i += gridDim.x) {
|
|
T scale, nudgedMin, nudgedMax;
|
|
nudge(min[i], max[i], lowIntBound, upperIntBound, &scale, &nudgedMin, &nudgedMax);
|
|
// loop over blocks to quantization between nudged min and max
|
|
for (auto b = threadIdx.x; b < block; b += blockDim.x) {
|
|
T val = input[shape::getIndexOffset(b * channels + i, inputShape)];
|
|
if (val < nudgedMin) {
|
|
val = nudgedMin;
|
|
} else if (val > nudgedMax) {
|
|
val = nudgedMax;
|
|
}
|
|
output[shape::getIndexOffset(b * channels + i, outputShape)] =
|
|
(math::nd4j_floor<T, T>((val - nudgedMin) / scale + T(0.5f)) * scale + nudgedMin);
|
|
};
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void fakeQuantWithMinMaxVarsPerChannel_(LaunchContext* context, NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
|
int lowIntBound = narrowed?1:0;
|
|
int upperIntBound = (1 << numBits) - 1;
|
|
auto channels = min->lengthOf();
|
|
auto length = input->lengthOf();
|
|
NDArray::prepareSpecialUse({output}, {min, max, input});
|
|
auto stream = context->getCudaStream();
|
|
T* inputBuf = input->dataBuffer()->specialAsT<T>();
|
|
T* outputBuf = output->dataBuffer()->specialAsT<T>();
|
|
T* minBuf = min->dataBuffer()->specialAsT<T>();
|
|
T* maxBuf = max->dataBuffer()->specialAsT<T>();
|
|
fakeQuantWithMinMaxKernel<<<128, 256, 256, *stream>>>(inputBuf, input->specialShapeInfo(),
|
|
minBuf, maxBuf, lowIntBound, upperIntBound, channels, outputBuf, output->specialShapeInfo(), length);
|
|
NDArray::registerSpecialUse({output}, {min, max, input});
|
|
|
|
}
|
|
|
|
void fakeQuantWithMinMaxVars(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), fakeQuantWithMinMaxVars_, (input, min, max, numBits, narrowed, output), FLOAT_TYPES);
|
|
}
|
|
void fakeQuantWithMinMaxVarsPerChannel(LaunchContext* context, NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), fakeQuantWithMinMaxVarsPerChannel_, (context, input, min, max, numBits, narrowed, output), FLOAT_TYPES);
|
|
}
|
|
}
|
|
}
|
|
}
|