279 lines
9.1 KiB
C++
279 lines
9.1 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
* Copyright (c) 2019-2020 Konduit K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
|
|
// @author Oleh Semeniv (oleg.semeniv@gmail.com)
|
|
//
|
|
|
|
#include <ops/declarable/helpers/transforms.h>
|
|
#include <helpers/Loops.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename X, typename Z>
|
|
static void mergeMaxIndex_(const std::vector<const NDArray*>& inArrs, NDArray& output) {
|
|
|
|
const Nd4jLong numArgs = inArrs.size();
|
|
auto x = inArrs[0];
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e++) {
|
|
X max = -DataTypeUtils::max<X>();
|
|
Z idx = static_cast<Z>(0);
|
|
|
|
for (Nd4jLong i = 0; i < numArgs; i++) {
|
|
X v = inArrs[i]->t<X>(e);
|
|
if (v > max) {
|
|
max = v;
|
|
idx = static_cast<Z>(i);
|
|
}
|
|
}
|
|
|
|
output.r<Z>(e) = static_cast<Z>(idx);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, x->lengthOf());
|
|
}
|
|
|
|
void mergeMaxIndex(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
|
|
BUILD_DOUBLE_SELECTOR(inArrs[0]->dataType(), output.dataType(), mergeMaxIndex_, (inArrs, output), LIBND4J_TYPES, INDEXING_TYPES);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
static void mergeMax_(const std::vector<const NDArray*>& inArrs, NDArray& output) {
|
|
|
|
const Nd4jLong numArgs = inArrs.size();
|
|
auto x = inArrs[0];
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e++) {
|
|
T max = -DataTypeUtils::max<T>();
|
|
for (Nd4jLong i = 0; i < numArgs; i++) {
|
|
T v = inArrs[i]->e<T>(e);
|
|
if (v > max)
|
|
max = v;
|
|
}
|
|
output.p(e, max);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, x->lengthOf());
|
|
}
|
|
|
|
void mergeMax(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
|
|
BUILD_SINGLE_SELECTOR(output.dataType(), mergeMax_, (inArrs, output), LIBND4J_TYPES);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
static void mergeMaxBp_(const std::vector<const NDArray*>& inArrs, std::vector<NDArray*>& outArrs) {
|
|
|
|
// outArrs.size() == inArrs.size() - 1
|
|
const Nd4jLong numArgs = outArrs.size();
|
|
// last array is gradient
|
|
const auto gradient = inArrs[numArgs]->bufferAsT<T>();
|
|
auto length = inArrs[numArgs]->lengthOf();
|
|
|
|
bool bSameOrderAndEws1 = (1 == inArrs[numArgs]->ews());
|
|
|
|
if (bSameOrderAndEws1) {
|
|
auto gradOrdering = inArrs[numArgs]->ordering();
|
|
|
|
for (int i = 0; i < numArgs; ++i) {
|
|
bSameOrderAndEws1 &= (gradOrdering == inArrs[i]->ordering());
|
|
bSameOrderAndEws1 &= (1 == inArrs[i]->ews());
|
|
bSameOrderAndEws1 &= (gradOrdering == outArrs[i]->ordering());
|
|
bSameOrderAndEws1 &= (1 == outArrs[i]->ews());
|
|
}
|
|
}
|
|
|
|
|
|
if(bSameOrderAndEws1){
|
|
auto func = PRAGMA_THREADS_FOR{
|
|
for (auto e = start; e < stop; e++) {
|
|
T max = -DataTypeUtils::max<T>();
|
|
Nd4jLong nMaxIndex = 0;
|
|
for (Nd4jLong i = 0; i < numArgs; i++) {
|
|
const T* v = inArrs[i]->bufferAsT<T>();
|
|
if (v[e] > max) {
|
|
max = v[e];
|
|
nMaxIndex = i;
|
|
}
|
|
}
|
|
T* z = outArrs[nMaxIndex]->bufferAsT<T>();
|
|
z[e] = gradient[e];
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, length);
|
|
return;
|
|
}
|
|
|
|
auto gradShape = inArrs[numArgs]->shapeInfo();
|
|
std::vector<bool> vbSameShaepeAndStrides(numArgs);
|
|
for (int i = 0; i < numArgs; ++i) {
|
|
vbSameShaepeAndStrides[i] = shape::haveSameShapeAndStrides(gradShape, inArrs[i]->shapeInfo());
|
|
}
|
|
|
|
auto func = PRAGMA_THREADS_FOR{
|
|
|
|
int coords[MAX_RANK];
|
|
for (auto e = start; e < stop; e++) {
|
|
|
|
shape::index2coordsCPU(start, e, gradShape, coords);
|
|
|
|
const auto gradOffset = shape::getOffset(gradShape, coords);
|
|
|
|
T max = -DataTypeUtils::max<T>();
|
|
Nd4jLong nMaxIndex = 0;
|
|
|
|
for (Nd4jLong i = 0; i < numArgs; i++) {
|
|
|
|
const auto xOffset = vbSameShaepeAndStrides[i] ? gradOffset : shape::getOffset(inArrs[i]->shapeInfo(), coords);
|
|
const T* v = inArrs[i]->bufferAsT<T>();
|
|
if (v[xOffset] > max) {
|
|
max = v[xOffset];
|
|
nMaxIndex = i;
|
|
}
|
|
}
|
|
|
|
const auto zOffset = vbSameShaepeAndStrides[nMaxIndex] ? gradOffset : shape::getOffset(outArrs[nMaxIndex]->shapeInfo(), coords);
|
|
|
|
T* z = outArrs[nMaxIndex]->bufferAsT<T>();
|
|
z[zOffset] = gradient[gradOffset];
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, length);
|
|
return;
|
|
}
|
|
|
|
void mergeMaxBp(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, std::vector<NDArray*>& outArrs) {
|
|
BUILD_SINGLE_SELECTOR(outArrs[0]->dataType(), mergeMaxBp_, (inArrs, outArrs), LIBND4J_TYPES);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
static void mergeAvg_(const std::vector<const NDArray*>& inArrs, NDArray& output) {
|
|
const Nd4jLong numArgs = inArrs.size();
|
|
const T factor = 1.f / numArgs;
|
|
auto x = inArrs[0];
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e++) {
|
|
T sum = 0.;
|
|
for (Nd4jLong i = 0; i < numArgs; i++) {
|
|
T v = inArrs[i]->e<T>(e);
|
|
sum += v;
|
|
}
|
|
output.p<T>(e, sum * factor);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, x->lengthOf());
|
|
}
|
|
|
|
void mergeAvg(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
|
|
BUILD_SINGLE_SELECTOR(output.dataType(), mergeAvg_, (inArrs, output), LIBND4J_TYPES);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
static void mergeAvgBp_(const NDArray& gradient, std::vector<NDArray*>& outArrs) {
|
|
|
|
const Nd4jLong numArgs = outArrs.size();
|
|
|
|
auto func = PRAGMA_THREADS_FOR{
|
|
for (auto e = start; e < stop; e++) {
|
|
|
|
T v = gradient.e<T>(e) / numArgs;
|
|
|
|
for (Nd4jLong i = 0; i < numArgs; i++) {
|
|
outArrs[i]->p<T>(e, v);
|
|
}
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, gradient.lengthOf());
|
|
}
|
|
|
|
void mergeAvgBp(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs) {
|
|
BUILD_SINGLE_SELECTOR(gradient.dataType(), mergeAvgBp_, (gradient, outArrs), LIBND4J_TYPES);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
static void mergeAdd_(const std::vector<const NDArray*>& inArrs, NDArray& output) {
|
|
|
|
const Nd4jLong numArgs = inArrs.size();
|
|
auto x = inArrs[0];
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e++) {
|
|
T sum = (T) 0.f;
|
|
for (Nd4jLong i = 0; i < numArgs; i++)
|
|
sum += inArrs[i]->e<T>(e);
|
|
|
|
output.p(e, sum);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, x->lengthOf());
|
|
}
|
|
void mergeAdd(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
|
|
BUILD_SINGLE_SELECTOR(output.dataType(), mergeAdd_, (inArrs, output), LIBND4J_TYPES);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
static void mergeAddBp_(const NDArray& gradient, std::vector<NDArray*>& outArrs) {
|
|
|
|
const Nd4jLong numArgs = outArrs.size();
|
|
|
|
auto func = PRAGMA_THREADS_FOR{
|
|
for (auto e = start; e < stop; e++) {
|
|
|
|
T v = gradient.e<T>(e);
|
|
|
|
for (Nd4jLong i = 0; i < numArgs; i++) {
|
|
outArrs[i]->p<T>(e, v);
|
|
}
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, gradient.lengthOf());
|
|
}
|
|
|
|
void mergeAddBp(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs) {
|
|
BUILD_SINGLE_SELECTOR(gradient.dataType(), mergeAddBp_, (gradient, outArrs), LIBND4J_TYPES);
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
}
|